昇思25天学习打卡营第11天|初学入门-模型训练
模型训练前的数据集准备、数据转换和定义网络模型已经讲过了,略
超参数
超参数一般新手都是学前人的经验的,或者自己一轮轮调出来,当然也可以编程实现自动化获取训练效果最好的学习率等超参数
- 训练轮次(epoch):训练时遍历数据集的次数。
- 批次大小(batch size):数据集进行分批读取训练,设定每个批次数据的大小。
- 学习率(learning rate):如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。
训练和测试
# Define forward function
def forward_fn(data, label):
logits = model(data)
loss = loss_fn(logits, label)
return loss, logits
# Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
# Define function of one-step training
def train_step(data, label):
(loss, _), grads = grad_fn(data, label)
optimizer(grads)
return loss
def train_loop(model, dataset):
size = dataset.get_dataset_size()
model.set_train()
for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
loss = train_step(data, label)
if batch % 100 == 0:
loss, current = loss.asnumpy(), batch
print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]")
- mindspore.value_and_grad根据返回的loss对优化器的参数进行求导获取梯度
- train_loop函数为循环训练函数,每训练完100个批次就进行输出
def test_loop(model, dataset, loss_fn):
num_batches = dataset.get_dataset_size()
model.set_train(False)
total, test_loss, correct = 0, 0, 0
for data, label in dataset.create_tuple_iterator():
pred = model(data)
total += len(data)
test_loss += loss_fn(pred, label).asnumpy()
correct += (pred.argmax(1) == label).asnumpy().sum()
test_loss /= num_batches
correct /= total
print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
- 测试中传入的训练好的模型和测试数据集,以及损失函数的计算方法
- 测试中药计算准确率和平均损失