实现一个函数,检查一棵二叉树是否为二叉搜索树。
示例 1:
输入:
2
/ \
1 3
输出: true
示例 2:
输入:
5
/ \
1 4
/ \
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
通过次数28,898提交次数81,854
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/legal-binary-search-tree-lcci
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
方法一:二叉搜索树定义
二叉查找树(Binary Search Tree),也称二叉搜索树、有序二叉树(ordered binary tree),排序二叉树(orted binary tree),是指一棵空树或者具有下列性质的二叉树:
若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
任意节点的左、右子树也分别为二叉查找树;
没有键值相等的节点
————————————————
原文链接:https://blog.csdn.net/John_xyz/article/details/79622219
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
def solve(node,low=float('-inf'),up=float('inf')):
if not node:
return True
if node.val<=low or node.val>=up:
return False
if not solve(node.left,low,node.val):
return False
if not solve(node.right,node.val,up):
return False
return True
return solve(root)
方法二:中序遍历
二叉搜索树的左子树永远小于根节点,右子树永远大于根节点,可以利用这个性质进行中序遍历,中序遍历是先遍历左节点,然后根节点,然后右节点,所以中序遍历的结果应该是升序排列,如果出现了非升序的情况,那么就不符合二叉搜索树的条件。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
nodes =[]
def search(root):
if root:
search(root.left)
nodes.append(root.val)
search(root.right)
search(root)
return nodes == sorted(set(nodes))