【面试题 04.05. 合法二叉搜索树】

实现一个函数,检查一棵二叉树是否为二叉搜索树。

示例 1:
输入:
    2
   / \
  1   3
输出: true
示例 2:
输入:
    5
   / \
  1   4
     / \
    3   6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
     根节点的值为 5 ,但是其右子节点值为 4 。
通过次数28,898提交次数81,854

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/legal-binary-search-tree-lcci
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

方法一:二叉搜索树定义

二叉查找树(Binary Search Tree),也称二叉搜索树、有序二叉树(ordered binary tree),排序二叉树(orted binary tree),是指一棵空树或者具有下列性质的二叉树:

若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
任意节点的左、右子树也分别为二叉查找树;
没有键值相等的节点
————————————————
原文链接:https://blog.csdn.net/John_xyz/article/details/79622219

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def isValidBST(self, root: TreeNode) -> bool:

        def solve(node,low=float('-inf'),up=float('inf')):
            if not node:
                return True
            if node.val<=low or node.val>=up:
                return False
            if not solve(node.left,low,node.val):
                return False
            if not solve(node.right,node.val,up):
                return False
            return True
        return solve(root)

方法二:中序遍历

二叉搜索树的左子树永远小于根节点,右子树永远大于根节点,可以利用这个性质进行中序遍历,中序遍历是先遍历左节点,然后根节点,然后右节点,所以中序遍历的结果应该是升序排列,如果出现了非升序的情况,那么就不符合二叉搜索树的条件。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def isValidBST(self, root: TreeNode) -> bool:
        nodes =[]
        def search(root):
            if root:
                search(root.left)
                nodes.append(root.val)
                search(root.right)
        search(root)
        return nodes == sorted(set(nodes))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值