- 博客(100)
- 资源 (4)
- 收藏
- 关注

原创 推荐系统入门:详解前深度学习时代常见模型
1. 前深度学习时代1.1 协同过滤《Amazon.com Recommenders Item-to-Item Collaborative Filtering》“协同过滤”就是协同大家的反馈、评价和意见一起对海量的信息进行过滤,从中筛选出目标用户可能感兴趣的信息的推荐过程。下面介绍基于用户的UserCF:生成共现矩阵。假设有m个用户,n个物品,每个用户会对n个物品中的一个或者几个进行评分,未评分的物品分值就用问号表示,则所有m个用户对物品的评分可形成一个m∗nm*nm∗n的评分矩阵,也就是协同
2021-01-13 18:38:49
583

原创 开发岗和算法岗该如何选择
如何看待2019年算法岗一片红海如何看待2020年算法岗诸神黄昏如何看待2021年算法岗灰飞烟灭诸如此类的标题,相信大家在知乎都看到过。小猿的粉丝大部分是面临找工作的同学和面临方向选择的同学,所以一直有很多同学问小猿同一个问题:我该选择算法岗还是开发岗呢这本来不应该是一个问题,一个标准的答案就是你喜欢什么就做什么。但是,因为这样那样的问题,很动人开始动摇、犹豫、难以抉择,我们把大家纠结的原因总结了一下,一条一条为大家分析:我喜欢算法,但是算法竞争太大了,我想转开发我读研了,感觉不做算法亏了
2020-09-22 18:35:16
12255
1

原创 Aanconda在win和linux下的常用命令
winanaconda创建环境conda create -n env_name python=3.6anaconda删除环境conda remove -n env_name --allanaconda激活环境source activate env_name(conda4的是:conda activate env_name)anaconda退出环境source deactivate(conda4的是:conda deactivate)linuxanaconda创建环境conda cr
2020-09-02 21:33:00
202

原创 该选择算法还是开发
最近有很多同学问小猿,我该选择算法还是开发?这本来不应该是一个问题,一个标准的答案就是你喜欢什么就做什么。但是,因为这样那样的问题,很动人开始动摇,我们把大家动摇的原因总结了一下,我们一条一条为大家分析:我喜欢算法,但是算法竞争太大了,我想转开发我读研了,感觉不做算法亏了我非科班,想转计算机,应该学什么我喜欢算法,但是算法竞争太大了,我想转开发算法岗五大标配:论文、比赛、实习、项目...
2020-03-21 19:53:03
8810

原创 如何拿到百度腾讯字节跳动offer
最近春招,是找实习的黄金时期,传说“金三银四”。为了帮助大家找工作,我们公众号采访到了一位国科大的学生,他最近拿到了百度、腾讯、字节三家offer,都是算法岗,让我们来听听他的经历。之前简历挂是什么情况啊我在大四的时候投过字节跳动,想去碰碰运气看能不能有凑一个实习。结果笔试都没过,三道题就AC了半道,妥妥挂了。后来暑假有投了一次,想凑一个暑期实习,结果二面挂了。当然之前都是玩玩的,我并没有说...
2020-03-15 20:37:55
1302
原创 如何入门推荐系统
前言推荐系统是一个很工程的领域,相比NLP,CV等理论性较强的AI方向入门难度要低一点。推荐的工作大体可以分为召回和排序,首先从数以万计的items中召回用户可能感兴趣的百万级的items,这里的数量级按照items的数量级来决定,items有可能是音乐(网易云音乐)、电影书籍(豆瓣),商品(淘宝京东)等等;然后从对筛选过一遍的items做排序。当然其实再往细说还有精排粗排等流程,这里作为知识普及就不细说了。召回主要通过多路召回,比如MostPoP(选出平台最受用户喜爱商品top10,推荐给每一个用户)
2021-01-14 16:32:25
534
原创 协同过滤与矩阵分解
1. 协同过滤“协同过滤”就是协同大家的反馈、评价和意见一起对海量的信息进行过滤,从中筛选出目标用户可能感兴趣的信息的推荐过程。下面介绍基于用户的UserCF:生成共现矩阵。假设有m个用户,n个物品,每个用户会对n个物品中的一个或者几个进行评分,未评分的物品分值就用问号表示,则所有m个用户对物品的评分可形成一个m∗nm*nm∗n的评分矩阵,也就是协同过滤中的共现矩阵。生成共现矩阵后,推荐问题就转换成了预测矩阵中问号的值的过程。通过每个用户对所有物品的评分向量,利用余弦相似度、皮尔逊相关系
2020-12-28 21:14:24
3538
原创 FM详解
1. 基本概念常见的线性表达式如下:y=ω0+∑i=1nωixiy=\omega_0 + \sum^{n}_{i=1}\omega_ix_iy=ω0+i=1∑nωixi其中ω0\omega_0ω0为初始权值,或者理解为偏置项,ωi\omega_iωi为每个特征xix_ixi对应的权值。可以看到,这种线性表达式只描述了每个特征与输出的关系。FM的表达式如下,可观察到,只是在线性表达式后面加入了新的交叉项特征及对应的权值。y=ω0+∑i=1nωixi+∑i=1n−1∑j=i+1nωijxi
2020-12-16 18:15:25
1073
原创 国科大 自然语言处理 期末复习总结
学长的话:之前做的笔记,现在拿出来翻了一翻,我研一一直在实验室搬砖,课基本没怎么上,期末剩下两周开始复习nlp,ml,ai三门专业课,均分也有90+。所以现在还没复习的学弟学妹们不要慌,看看我整理的两个复习笔记,没问题的!上次考试知识点连词引起歧义的结构编辑距离(插入、删除、替换、交换)有限状态自动机与正则文法之间的转化复杂特征集的交集三元文法(Tri-grams)评价机器翻译译文质量的方法分词系统的准确率、召回率和F1依存关系树的性能指标正向最.
2020-12-02 14:59:03
6180
2
原创 传统文本相似度算法
TF-IDFTF-IDF(Term Frequency-inverse Document Frequency)是一种针对关键词的统计分析方法,用于评估一个词对一个文件集或者一个语料库的重要程度。一个词的重要程度跟它在文章中出现的次数成正比,跟它在语料库出现的次数成反比。这种计算方式能有效避免常用词对关键词的影响,提高了关键词与文章之间的相关性。其中TF指的是某词在文章中出现的总次数,该指标通常会被归一化定义为:tfi,j=ni,j∑knk,jtf_{i,j} = \frac{n_{i,j}}{\sum
2020-12-01 10:05:56
512
原创 一文解决面试高频的:搜索旋转排序数组问题
本文部分参考:https://imageslr.github.io/2020/03/06/leetcode-33.html#%E6%80%BB%E7%BB%93今天带来搜索旋转排序数组题的总结,:LeetCode 33 题:搜索旋转排序数组LeetCode 81 题:搜索旋转排序数组-iiLeetCode 153 题:寻找旋转排序数组中的最小值LeetCode 154 题:寻找旋转排序数组中的最小值-ii这几道题可以分为三类:33和81题属于搜索特定值,153和154题属于搜索最小值,81和
2020-11-17 19:40:31
337
原创 Caught RuntimeError in replica 0 on device 0(为什么pytorch多卡跑会报错)
为什么我们多卡运行pytorch的时候会报错呢?如果你找遍了全网都没找到解决方法,那不妨看看本文:a = torch.nn.Parameter(torch.zeros(dims, 1).type(torch.FloatTensor), requires_grad=True) a = torch.autograd.Variable(torch.zeros(dims, 1).type(torch.FloatTensor), requires_grad=True)Variable和P
2020-11-05 18:08:10
11897
1
原创 推荐系统FM(因子分解机)详细推导
1. 基本概念常见的线性表达式如下:y=ω0+∑i=1nωixiy=\omega_0 + \sum^{n}_{i=1}\omega_ix_iy=ω0+i=1∑nωixi其中ω0\omega_0ω0为初始权值,或者理解为偏置项,ωi\omega_iωi为每个特征xix_ixi对应的权值。可以看到,这种线性表达式只描述了每个特征与输出的关系。FM的表达式如下,可观察到,只是在线性表达式后面加入了新的交叉项特征及对应的权值。y=ω0+∑i=1nωixi+∑i=1n−1∑j=i+1nωijxi
2020-11-03 18:25:49
710
原创 逻辑回归为什么要用sigmoid函数
这个问题我们要从普通线性模型与广义线性模型开始讲起,看官不要着急,慢慢的往下看。普通线性模型与广义线性模型普通线性模型是用模型的预测值去逼近真实标记y:Y=ω1x1+ω2x2+ω3x3+ω4x4+...+ωpxp+bY = \omega_{1}x_1 + \omega_{2}x_2 + \omega_{3}x_3 + \omega_{4}x_4 +... + \omega_{p}x_{p}+bY=ω1x1+ω2x2+ω3x3+ω4x4+...+ωpxp+bY=ωTx+bY = \
2020-09-28 15:59:32
1419
原创 pytorch中的kl散度,为什么kl散度是负数?
F.kl_div()或者nn.KLDivLoss()是pytroch中计算kl散度的函数,它的用法有很多需要注意的细节。输入第一个参数传入的是一个对数概率矩阵,第二个参数传入的是概率矩阵。并且因为kl散度具有不对称性,存在一个指导和被指导的关系,因此这连个矩阵输入的顺序需要确定一下。如果现在想用Y指导X,第一个参数要传X,第二个要传Y。就是被指导的放在前面,然后求相应的概率和对数概率就可以了。所以,一随机初始化一个tensor为例,对于第一个输入,我们需要先对这个tensor进行softmax(确保各
2020-09-27 13:19:07
12311
8
原创 微信PK抖音,谁能赢?
腾讯是中国top2的互联网公司,前几个月腾讯股票大涨,CEO马化腾也是顺势坐上了中国首富的位置(当然现在易主了),但是腾讯这两年也受到了非常大的挑战,他最大的对手就是:字节跳动!字节跳动是什么公司?你平时刷的抖音,就是字节跳动的产品。你们可能会有疑问,微信和抖音完全没有关系啊,为什么两个公司会有竞争呢?你们知道这两个公司竞争的是什么吗?是你的时间。用户的时间就那么多,随着抖音的崛起,日活甚至突破了6亿,用户花在微信qq等社交平台的时间越来越少,大量的时间被抖音所吸引,与此同时,带来的后果是微信qq的广
2020-09-23 22:12:34
1757
原创 如何用裸机从零开始配置深度学习环境
安装显卡驱动没有安装显卡驱动时,nvidia-smi命令失败关闭linux的桌面模式sudo service lightdm stopinit 3打开非图形化界面进行安装到https://www.nvidia.cn/Download/index.aspx?lang=cn下载合适的显卡驱动,我们这下载的是NVIDIA-Linux-x86_64-450.66.run给文件加可执行权限chmod +x NVIDIA-Linux-x86_64-450.66.run安装即可sudo./NVIDIA-Li
2020-09-22 17:49:21
297
原创 在官网找不到pytorch的包怎么办?
相信各位读者平时在跑实验的时候肯定会遇到这样的问题,这篇论文写的很好,github也有相应的代码,但是其中用到的包我总是找不到合适的版本怎么办?这里,小猿以pytorch为例来向大家介绍一下解决这个问题的方法。现在学术界编写深度学习实验的时候,越来越喜欢使用pytorch,但是pytorch更新很快,在官网往往只有最新版本,我们常常找不到论文中用的版本,怎么办呢?找到一个离线下载pytorch安装包的网址,https://anaconda.org/pytorch/pytorch/files.
2020-09-02 21:43:52
633
原创 什么是汉明重量
191. 位1的个数 【简单题】【位运算】编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量)。输入:00000000000000000000000000001011输出:3解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 '1'。输入:00000000000000000000000010000000输出:1解释:输入的二进制串 0000000000000000000000001000.
2020-09-02 21:14:17
2621
2
原创 每周论文速递之1——不讲究顺序的序列推荐
今天带来的两篇论文是关于Sequential/Session推荐的,2015年的神作《GRU4REC:Session-based Recommendations with Recurrent Neural Networks》开启了基于用户历史行为的序列化建模的热潮,将用户历史行为通过RNN进行建模。但是这种自左向右的序列推荐算法限制了用户历史信息的发挥,RNN有顺序的,而这种顺序性的假设,对于实际生活中的用户行为并不适用。举个例子,我们今天可能会买笔记本电脑、耳机、机械键盘,但这三样东西的购买顺序完全可以
2020-09-01 13:59:23
349
原创 两百天两百题大挑战之1——岛屿数量
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ru5RQP5U-1598504889842)(https://imgkr2.cn-bj.ufileos.com/ce31ca72-fdfd-4a64-bc9e-4630961c2eea.png?UCloudPublicKey=TOKEN_8d8b72be-579a-4e83-bfd0-5f6ce1546f13&Signature=C0dLRkKxLBZXVWZRkaL1RmT315c%253D&Expires=1
2020-08-29 15:38:59
196
原创 人工智能领域书籍推荐
35本人工智能领域书籍大放送!今天,算法岗从零到无穷精选35本深度学习、机器学习、自然语言处理、算法领域的经典电子书,我们将一次性统统分享给大家!只有两天,手慢无!如何获取?微信识别下方二维码关注,回复电子书福利,即可下载。书籍清单关于我们:算法岗从零到无穷专注于算法岗的就业指导。我们的公众号主推以下几个模块:高频面试算法题与经典算法题详解不定期内推信息(保证是经过筛选的高质量内推信息)各大互联网公司的真实面经offer收割机的个人的面试心得分享专业知识点讲解
2020-05-31 13:46:40
1047
原创 力扣杯春季全国编程大赛【签到题】讲解
4月25日leetcode中文社区举行了力扣杯2020春季全国编程大赛,这次大赛让小猿见识到了神人的存在,比如下面这位大神,一个人一支队伍,还取得了第一,真大佬。今天就为我的读者朋友们带来这次比赛的签到题,虽然代码很简单,但是思考的过程还是很有趣的。题目描述某互联网公司一年一度的春招开始了,一共有n名面试者入选。每名面试者都会提交一份简历,公司会根据提供的简历资料产生一个预估的能力值,数...
2020-04-25 20:16:36
1136
原创 在网易的工作体验
今年不知道有多少人拿到了网易的offer,不知道大家是不是很憧憬网易的食堂呢(毕竟有着“猪场”的美誉)?今天的主人公小粟曾经在网易实习过一段时间,我们请他来讲讲网易工作的体会吧!小粟:我在杭州网易实习过一段时间,杭州网易在滨江,有两大园区隔着一条马路。下面我就从以下一些方面来给大家分享一下网易的实习体验。1. 交通网易园区地铁不能直达,但是网易的班车还是能覆盖大半个杭州的,上班的班车到达...
2020-04-18 16:56:31
3127
原创 面试题 10.11. 峰与谷
面试题 10.11. 峰与谷 【中等题】【数组】在一个整数数组中,“峰”是大于或等于相邻整数的元素,相应地,“谷”是小于或等于相邻整数的元素。例如,在数组{5, 8, 6, 2, 3, 4, 6}中,{8, 6}是峰, {5, 2}是谷。现在给定一个整数数组,将该数组按峰与谷的交替顺序排序。输入: [5, 3, 1, 2, 3]输出: [5, 1, 3, 2, 3]题目讲解【历史重...
2020-04-14 22:07:31
362
原创 字节跳动面经 算法岗
一面交叉熵的推导如何确定kmeans的k【肘部法则和轮廓系数】肘部法则:我们知道k-means是以最小化样本与质点平方误差作为目标函数,将每个簇的质点与簇内样本点的平方距离误差和称为畸变程度(distortions),那么,对于一个簇,它的畸变程度越低,代表簇内成员越紧密,畸变程度越高,代表簇内结构越松散。 畸变程度会随着类别的增加而降低,但对于有一定区分度的数据,在达到某个临界点时畸...
2020-03-31 12:09:18
1410
原创 爱奇艺面经 算法岗
一面:解释一下《attention is all you need》中的attention机制解释一下逻辑回归考几个linux的指令(重命名文件,vim替换,vim指向文章最末行)面试常用linux指令看这里实现开根号函数【二分,简单题】二面:给了一篇论文规定时间内看完,并让你讲解论文三面:问项目实现前缀树【中等题】题解看这里关注我,更多大厂面经告...
2020-03-31 12:07:54
667
原创 不同的二叉搜索树
不同的二叉搜索树【中等题】给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?输入: 3输出: 5解释:给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 ...
2020-03-30 20:16:05
146
转载 生成模型与判别模型详解
本篇会详细讲解生成模型和判别模型的区别,篇幅稍长作者:zouxy09来源:https://blog.csdn.net/zouxy09/article/details/8195017决策函数Y=f(X)或者条件概率分布P(Y|X)监督学习的任务就是从数据中学习一个模型(也叫分类器),应用这一模型,对给定的输入X预测相应的输出Y。这个模型的一般形式为决策函数Y=f(X)或者条件概率分布P(...
2020-03-25 11:02:01
416
原创 结构风险最小化
从今天起,我们不定期为大家推送大厂的真实面试题,推荐你的朋友关注我们吧!问:你看过哪些机器学习中的书答:周志华的西瓜书,李航的统计学问:李航的那本书叫什么名字答:《统计学习方法》问:那你讲一下第一讲的结构风险最小化是什么吧什么是结构风险最小化在机器学习算法中,一般定义一个损失函数L(y,f(x,θ))L(y,f(x,\theta))L(y,f(x,θ)),在所有的训练样本上...
2020-03-24 19:37:12
2249
原创 877. 石子游戏
877. 石子游戏 【中等题】亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] 。游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的开始或结束处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中石子最多的玩家获胜。假设亚历克斯和李都发挥出最佳水平,当亚历克斯...
2020-03-21 21:14:14
264
原创 17. 电话号码的字母组合
17. 电话号码的字母组合 【中等题】【回溯】给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。输入:"23"输出:["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"].题目讲解【历史重难点题目】历史重难点题目总结【核心思想】...
2020-03-21 09:25:35
191
原创 79. 单词搜索
79. 单词搜索 【中等题】【深搜】给定一个二维网格和一个单词,找出该单词是否存在于网格中。单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。board =[ ['A','B','C','E'], ['S','F','C','S'], ['A','D','E','E']]给定 ...
2020-03-18 11:14:32
167
原创 逆康托展开
60. 第k个排列 【中等题】给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:“123”“132”“213”“231”“312”“321”给定 n 和 k,返回第 k 个排列。输入: n = 3, k = 3输出: "213"输入: n = 4, k = 9输出: "2314...
2020-03-17 19:43:52
172
原创 国科大英语小作业
1. 如果你是你们学校演讲社的社长,请设计一个欢迎词Hello everyone, welcome to the speech club. Thank you for taking your precious spare time from your busy study life to join our speech club.Our club holds an exchange meeti...
2020-03-15 21:22:39
772
原创 40. 组合总和 II
40. 组合总和 II 【中等题】【回溯】给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的每个数字在每个组合中只能使用一次。说明:所有数字(包括 target)都是正整数。解集不能包含重复的组合。输入: candidates = [10,1,2,7,6,1,5],...
2020-03-15 14:37:49
190
原创 22. 括号生成
22. 括号生成 【中等题】【回溯】给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合。例如,给出 n = 3,生成结果为:[ "((()))", "(()())", "(())()", "()(())", "()()()"]题目讲解【历史重难点题目】历史重难点题目总结【核心思想】当左括号数小于n时,加左括号...
2020-03-14 22:18:14
221
原创 39. 组合总和
39. 组合总和 【中等题】【回溯】给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的数字可以无限制重复被选取。说明:所有数字(包括 target)都是正整数。解集不能包含重复的组合。输入: candidates = [2,3,6,7], target ...
2020-03-14 21:52:46
196
原创 如何用一个数组实现三个栈
面试题 03.01. 三合一 【简单题】三合一。描述如何只用一个数组来实现三个栈。你应该实现push(stackNum, value)、pop(stackNum)、isEmpty(stackNum)、peek(stackNum)方法。stackNum表示栈下标,value表示压入的值。构造函数会传入一个stackSize参数,代表每个栈的大小。 输入:["TripleInOne", ...
2020-03-13 22:02:29
710
原创 写给读大学的你
今天我们采访到了一位保研到计算所的学长,他成绩并不突出、科研也并不成功,是一个完完全全的普通人,但他最终取得的成果,却是很突出的。他的经历,可以给大家带来什么启示呢?我们来听听他的大学是怎么度过的:我高考时候压线进入了东北某末流985,看了排名才知道是进入该学校的我省学生中最后一名。最后进入了软件工程专业学习。大一大一的时候,我像很多有志青年一样,励志好好学习、加入学生组织历练一下自己,开学...
2020-03-12 22:18:30
237
国科大模式识别与机器学习历年考题
2020-01-11
国科大高级人工智能历年考题.zip
2020-01-11
国科大自然语言处理历年考题.zip
2020-01-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人