给定两个以 非递减顺序排列 的整数数组 nums1
和 nums2
, 以及一个整数 k
。
定义一对值 (u,v)
,其中第一个元素来自 nums1
,第二个元素来自 nums2
。
请找到和最小的 k
个数对 (u1,v1)
, (u2,v2)
... (uk,vk)
。
示例 1:
输入: nums1 = [1,7,11], nums2 = [2,4,6], k = 3 输出: [1,2],[1,4],[1,6] 解释: 返回序列中的前 3 对数: [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
示例 2:
输入: nums1 = [1,1,2], nums2 = [1,2,3], k = 2 输出: [1,1],[1,1] 解释: 返回序列中的前 2 对数: [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]
示例 3:
输入: nums1 = [1,2], nums2 = [3], k = 3 输出: [1,3],[2,3] 解释: 也可能序列中所有的数对都被返回:[1,3],[2,3]
提示:
1 <= nums1.length, nums2.length <= 105
-109 <= nums1[i], nums2[i] <= 109
nums1
和nums2
均为升序排列1 <= k <= 104
import heapq
class Solution:
def kSmallestPairs(self, nums1: List[int], nums2: List[int], k: int) -> List[List[int]]:
if not nums1 or not nums2:
return []
m, n = len(nums1), len(nums2)
heap = [] # 最小堆
result = []
seen = set() # 用于避免重复
# 初始情况:将(0,0)加入堆
heapq.heappush(heap, (nums1[0] + nums2[0], 0, 0))
seen.add((0, 0))
while k > 0 and heap:
val, i, j = heapq.heappop(heap)
result.append([nums1[i], nums2[j]])
k -= 1
if i + 1 < m and (i + 1, j) not in seen:
heapq.heappush(heap, (nums1[i + 1] + nums2[j], i + 1, j))
seen.add((i + 1, j))
if j + 1 < n and (i, j + 1) not in seen:
heapq.heappush(heap, (nums1[i] + nums2[j + 1], i, j + 1))
seen.add((i, j + 1))
return result
提供灵佬的去重思路: