Leetcode 【373. 查找和最小的 K 对数字】

给定两个以 非递减顺序排列 的整数数组 nums1 和 nums2 , 以及一个整数 k 

定义一对值 (u,v),其中第一个元素来自 nums1,第二个元素来自 nums2 

请找到和最小的 k 个数对 (u1,v1) (u2,v2)  ...  (uk,vk) 。

示例 1:

输入: nums1 = [1,7,11], nums2 = [2,4,6], k = 3
输出: [1,2],[1,4],[1,6]
解释: 返回序列中的前 3 对数:
     [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]

示例 2:

输入: nums1 = [1,1,2], nums2 = [1,2,3], k = 2
输出: [1,1],[1,1]
解释: 返回序列中的前 2 对数:
     [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]

示例 3:

输入: nums1 = [1,2], nums2 = [3], k = 3 
输出: [1,3],[2,3]
解释: 也可能序列中所有的数对都被返回:[1,3],[2,3]

提示:

  • 1 <= nums1.length, nums2.length <= 105
  • -109 <= nums1[i], nums2[i] <= 109
  • nums1 和 nums2 均为升序排列
  • 1 <= k <= 104
import heapq

class Solution:
    def kSmallestPairs(self, nums1: List[int], nums2: List[int], k: int) -> List[List[int]]:
        if not nums1 or not nums2:
            return []
        
        m, n = len(nums1), len(nums2)
        heap = []  # 最小堆
        result = []
        seen = set()  # 用于避免重复

        # 初始情况:将(0,0)加入堆
        heapq.heappush(heap, (nums1[0] + nums2[0], 0, 0))
        seen.add((0, 0))

        while k > 0 and heap:
            val, i, j = heapq.heappop(heap)
            result.append([nums1[i], nums2[j]])
            k -= 1

            if i + 1 < m and (i + 1, j) not in seen:
                heapq.heappush(heap, (nums1[i + 1] + nums2[j], i + 1, j))
                seen.add((i + 1, j))

            if j + 1 < n and (i, j + 1) not in seen:
                heapq.heappush(heap, (nums1[i] + nums2[j + 1], i, j + 1))
                seen.add((i, j + 1))

        return result

提供灵佬的去重思路:

力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值