时间复杂度和空间复杂度

时间复杂度:
  一般情况下,算法中本操作重复执行的次数是问题规模n的某个函数f(n),进而分析f(n)随n的变化情况并确定T(n)的数量级。这里用"O"来表示数量级,给出算法的时间复杂度。
                     T(n)=O(f(n));
  它表示随着问题规模的n的增大,算法的执行时间的增长率和f(n)的增长率相同,这称作算法的渐进时间复杂度,简称时间复杂度。而我们一般讨论的是最坏时间复杂度,这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,分析最坏的情况以估算算法指向时间的一个上界。

时间复杂度的分析方法:
1、时间复杂度就是函数中基本操作所执行的次数
2、一般默认的是最坏时间复杂度,即分析最坏情况下所能执行的次数
3、忽略掉常数项
4、关注运行时间的增长趋势,关注函数式中增长最快的表达式,忽略系数
5、计算时间复杂度是估算随着n的增长函数执行次数的增长趋势
6、递归算法的时间复杂度为:递归总次数 * 每次递归中基本操作所执行的次数

    常用的时间复杂度有以下七种,算法时间复杂度依次增加:O(1)常数型、O(log2 n)对数型、O(n)线性型、O(n log2 n)二维型、O(n^2)平方型、O(n^3)立方型、O(2^n)指数型.



空间复杂度:
  算法的空间复杂度并不是计算实际占用的空间,而是计算整个算法的辅助空间单元的个数,与问题的规模没有关系。算法的空间复杂度S(n)定义为该算法所耗费空间的数量级。
  S(n)=O(f(n))   若算法执行时所需要的辅助空间相对于输入数据量n而言是一个常数,则称这个算法的辅助空间为O(1); 
  递归算法的空间复杂度:递归深度N*每次递归所要的辅助空间, 如果每次递归所需的辅助空间是常数,则递归的空间复杂度是 O(N)

1、求二分法的时间复杂度和空间复杂度【非递归】:

template<typename T>
T* BinarySearch(T* array,int number,const T& data)
{
	assert(number>=0);
	int left = 0;
	int right = number-1;
	while (right >= left){
		int mid = (left&right) + ((left^right)>>1);
		if (array[mid] > data)			 right = mid - 1;
		else if (array[mid] < data)	 left = mid + 1;
		else										 return (array + mid);
	}
	return NULL;
}

分析:


循环的基本次数是 log2 N ,所以:
时间复杂度是O( log2  N);
由于辅助空间是常数级别的所以:
空间复杂度是O(1);

2、求二分法的时间复杂度和空间复杂度【递归】:
template<typename T>  
T* BinarySearch(T* left,T* right,const T& data)  
{  
	assert(left);  
	assert(right);  
	if (right >=left)  {  
		T* mid =left+(right-left)/2;  
		if (*mid == data)		return mid;  
		else if(*mid > data)		return BinarySearch(left, mid - 1, data);
		else				return BinarySearch(mid + 1, right, data); 
	}  
	else  return NULL;    
}  



    递归的次数和深度都是log2 N,每次所需要的辅助空间都是常数级别的:
    时间复杂度:O(log2 N)
    空间复杂度:O(log2N)

3、斐波那契数列的时间和空间复杂度

//递归情况下的斐波那契数列
long long Fib(int n)  
{  
       assert(n >= 0);  
       return n<2 ? n : Fib(n - 1) + Fib(n-2);  
}


    递归的时间复杂度是:  递归次数*每次递归中执行基本操作的次数
    所以时间复杂度是: O(2^N)
    递归的空间复杂度是:  递归的深度*每次递归所需的辅助空间的个数
    所以空间复杂度是:O(N)

//求前n项中每一项的斐波那契数列的值
long long *Fib(int  n)  
{  
	assert(n>=0);  
	long long *array = new long long[n + 1];  
	array[0] = 0;  
	if (n > 0)		array[1] = 1;  
	for (int i = 2; i <n+1; i++)  {  
		array[i] = array[i - 1] + array[i - 2];  
	}  
	return array;  
}  

    循环的基本操作次数是n-1,辅助空间是n+1,所以:
    时间复杂度O(n)
    空间复杂度O(n)

//循环情况下的斐波那契数列

    long long Fib(int n)  
    {  
           assert(n >= 0);  
           long long first=0,second=1;  
           for (int i = 2; i <= n; i++)  
           {  
                  first = first^second;  
                  second = first^second;  
                  first = first^second;  
                  second = first + second;  
           }  
           return second;  
    }  
    循环的基本次数是n-1,所用的辅助空间是常数级别的:
    时间复杂度:O(n)
    空间复杂度:O(1)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值