虚数的意义

标签: 图解原理
7人阅读 评论(0) 收藏 举报
分类:

有人在Stack Exchange问了一个问题:

  "我一直觉得虚数(imaginary number)很难懂。

  中学老师说,虚数就是-1的平方根。

  

  可是,什么数的平方等于-1呢?计算器直接显示出错!

  直到今天,我也没有搞懂。谁能解释,虚数到底是什么?

  它有什么用?"

帖子的下面,很多人给出了自己的解释,还推荐了一篇非常棒的文章《虚数的图解》。我读后恍然大悟,醍醐灌顶,原来虚数这么简单,一点也不奇怪和难懂!

下面,我就用自己的语言,讲述我所理解的虚数。

一、什么是虚数?

首先,假设有一根数轴,上面有两个反向的点:+1和-1。

这根数轴的正向部分,可以绕原点旋转。显然,逆时针旋转180度,+1就会变成-1。

这相当于两次逆时针旋转90度。

因此,我们可以得到下面的关系式:

  (+1) * (逆时针旋转90度) * (逆时针旋转90度) = (-1)

如果把+1消去,这个式子就变为:

  (逆时针旋转90度)^2 = (-1)

将"逆时针旋转90度"记为 i :

  i^2 = (-1)

这个式子很眼熟,它就是虚数的定义公式。

所以,我们可以知道,虚数 i 就是逆时针旋转90度,i 不是一个数,而是一个旋转量。

二、复数的定义

既然 i 表示旋转量,我们就可以用 i ,表示任何实数的旋转状态。

将实数轴看作横轴,虚数轴看作纵轴,就构成了一个二维平面。旋转到某一个角度的任何正实数,必然唯一对应这个平面中的某个点。

只要确定横坐标和纵坐标,比如( 1 , i ),就可以确定某个实数的旋转量(45度)。

数学家用一种特殊的表示方法,表示这个二维坐标:用 + 号把横坐标和纵坐标连接起来。比如,把 ( 1 , i ) 表示成 1 + i 。这种表示方法就叫做复数(complex number),其中 1 称为实数部,i 称为虚数部。

为什么要把二维坐标表示成这样呢,下一节告诉你原因。

三、虚数的作用:加法

虚数的引入,大大方便了涉及到旋转的计算。

比如,物理学需要计算"力的合成"。假定一个力是 3 + i ,另一个力是 1 + 3i ,请问它们的合成力是多少?

根据"平行四边形法则",你马上得到,合成力就是 ( 3 + i ) + ( 1 + 3i ) = ( 4 + 4i )。

这就是虚数加法的物理意义。

四、虚数的作用:乘法

如果涉及到旋转角度的改变,处理起来更方便。

比如,一条船的航向是 3 + 4i 。

如果该船的航向,逆时针增加45度,请问新航向是多少?

45度的航向就是 1 + i 。计算新航向,只要把这两个航向 3 + 4i 与 1 + i 相乘就可以了(原因在下一节解释):

  ( 3 + 4i ) * ( 1 + i ) = ( -1 + 7i )

所以,该船的新航向是 -1 + 7i 。

如果航向逆时针增加90度,就更简单了。因为90度的航向就是 i ,所以新航向等于:

  ( 3 + 4i ) * i = ( -4 + 3i )

这就是虚数乘法的物理意义:改变旋转角度。

五、虚数乘法的数学证明

为什么一个复数改变旋转角度,只要做乘法就可以了?

下面就是它的数学证明,实际上很简单。

任何复数 a + bi,都可以改写成旋转半径 r 与横轴夹角 θ 的形式。

假定现有两个复数 a + bi 和 c + di,可以将它们改写如下:

  a + bi = r1 * ( cosα + isinα )

  c + di = r2 * ( cosβ + isinβ )

这两个复数相乘,( a + bi )( c + di ) 就相当于

  r1 * r2 * ( cosα + isinα ) * ( cosβ + isinβ )

展开后面的乘式,得到

  cosα * cosβ - sinα * sinβ + i( cosα * sinβ + sinα * cosβ )

根据三角函数公式,上面的式子就等于

  cos(α+β) + isin(α+β)

所以,

  ( a + bi )( c + di ) = r1 * r2 * ( cos(α+β) + isin(α+β) )

这就证明了,两个复数相乘,就等于旋转半径相乘、旋转角度相加。

查看评论

虚数的几何意义

虚数这个概念一直困扰着我。就和神秘的常数 e 一样,大多数解释都无非是以下两种套路: 它是一个数学概念,用来套套公式就行。 它在高等物理里面才会用到,所以别担心,到大学你就明白了。 如此教学...
  • xitong2012
  • xitong2012
  • 2015-05-13 16:13:44
  • 851

浅谈虚数i在电路分析中的作用

虚数在我们的电子电路中应用非常广泛,从电路分析的向量法,数字信号处理的FFT运算,还有多阶微分 方程的求解等等,然而,虚数的出现,正式我开始迷惑的时候,以前,我们只知道虚数 i的平方=-1,然而后来...
  • sun_haoming
  • sun_haoming
  • 2015-11-16 10:38:45
  • 1048

虚数的意义,虚数到底是什么

四轴飞行姿态的解算需要用到虚数、四元数,无奈重温高等数学,BetterExplained上面有关于虚数的非常好的解释,很浅显易懂,转给大家参考。 四轴飞行姿态的解算需要用到虚数、四元数,无奈重温...
  • xitong2012
  • xitong2012
  • 2014-11-05 22:08:18
  • 733

虚数的意义(绝对经典)

http://www.ruanyifeng.com/blog/2012/09/imaginary_number.html?bsh_bid=146013958
  • Matrix4X4
  • Matrix4X4
  • 2012-10-18 13:18:13
  • 534

复数的认识与理解

复数 ⇒ 数从一维变成了二维平面; F(w)=F[f(t)]=∫∞−∞f(t)e−iwtdt F(w)=\mathcal F[f(t)]=\int_{-\infty}^{\infty}f(t)e^{-...
  • lanchunhui
  • lanchunhui
  • 2016-11-14 20:04:01
  • 1099

一步一步学习C++(类)之虚函数和纯虚数

1、 该函数必须与基类的虚函数有相同的名称 2、 该函数必须与基类的虚函数有相同的参数个数和相对应的参数类型。 3、 该函数必须与基类的虚函数有相同的返回值,或满足类型兼容规则的指针,引用...
  • xy010902100449
  • xy010902100449
  • 2015-04-09 19:51:32
  • 1742

生动形象解释虚数的意义

一篇写的很好的介绍虚树的文章~from 这里 一、什么是虚数? 首先,假设有一根数轴,上面有两个反向的点:+1和-1。 这根数轴的正向部分,可以绕原点旋转。显然,逆时针旋转180度,+1就...
  • Regina8023
  • Regina8023
  • 2015-04-05 22:36:50
  • 880

matlab纠错---类型转换去虚数

for count=1:length center_distance= sqrt(center(count,1)-center(count,3))^2 - (center(count,2)-cente...
  • qq_19764963
  • qq_19764963
  • 2015-03-07 16:14:20
  • 731

虚数的图解

下面,我就用自己的语言,讲述我所理解的虚数。 一、什么是虚数? 首先,假设有一根数轴,上面有两个反向的点:+1和-1。 这根数轴的正向部分,可以绕原点旋转。显然,逆时针旋转1...
  • dachylong
  • dachylong
  • 2015-09-13 21:58:55
  • 2023
    个人资料
    等级:
    访问量: 2125
    积分: 1154
    排名: 4万+
    文章存档