斐波那契堆
作者: 大树先生
博客: http://blog.csdn.net/koala_tree
GitHub:https://github.com/koalatree
2017 年 09 月 13 日
自《算法导论》.
斐波那契堆有两种用途:第一种,支持一系列操作,这些操作构成了所谓的“可合并堆”。第二种,斐波那契堆的一些操作可以在常数摊还时间内完成。
可合并堆的两种实现方式下各操作的运行时间。在操作时堆中的项数用n表示。
一、斐波那契堆结构
一个斐波那契堆是一系列具有最小堆序的有根树的集合。也就是说,每棵树均遵循最小堆性质:每个结点的关键字大于或等于它的父结点的关键字。
结点属性:
- x.p:指向其父结点的指针;
- x.child:指向其某一个孩子结点的指针;x结点所有的孩子链接成一个环形双向链表,称为孩子链表;
- y.left、y.right:每个孩子y包含,分别指向y的左兄弟和右兄弟,若只有一个孩子,则y.left=y.right=y;
- x.degree:结点x的孩子链表中的孩子树木;
- x.mark:结点x自从上一次成为另一个结点的孩子后,是否失去过孩子;
- H.min:用来访问给定的斐波那契堆,指向具有最小关键字的树的根结点,称为最小结点;
- H.n:表示H中当前结点数目。
势函数:
使用势方法来分析斐波那契堆操作的性能。
- t(H) :表示H中跟链表中树的数目;
- m(H) :表示H中已标记的结点数目;
- 势函数 Φ(H) :
Φ(H)=t(H)+2m(H)
最大度数:
在一个n个结点的斐波那契堆中任何结点的最大度数都有上界 D(n)⩽⌊