Question
给出一个从小到大排好序的整数数组 nums 和一个整数 n,在数组中添加若干个补丁(元素)使得 [1,n] 的区间内的所有数都可以表示成 nums 中若干个数的和。返回最少需要添加的补丁个数。
Example1:
nums = [1, 3], n = 6
返回1,表示至少需要添加1个数{2},才可以表示1到6之间所有数。
Example2:
nums = [1, 5, 10], n = 20
返回2,表示至少需要添加两个数{2,4},才可以表示1到20之间所有数。
Answer
Solution 1:
使用贪心的思想。
- 可以考虑相似的简单问题:如果nums数组为空,那么最少需要多少个数字才能表示1到n之间所有数?贪心算法,即按照1、2、4、8…都顺序添加,每次加入都数都比之前所有数的总和大1,直到总和大于n;
- 对于本题,则是预先在数组中给出了一些数,但贪心策略实质是相同的:假设nums当前至多可以表示1到m之间的所有数,加入m+1,则数组可以表示从1到2m+1的任意的数,令新的m=2m+1;直到m大于等于n,则数组可以表示从1到n的所有数。
class Solution {
public int minPatches(int[] nums, int n) {
long sum = 0;
int ans = 0; //用于记录需要添加数字的个数
int index = 0; // 用于记录数组遍历的位置
if (nums.length > 0 && nums[0] == 1) {
sum = 1;
index = 1;
}
while (sum < n)
{
// 判断数值中的下一个元素是否大于当前和,即为m+1,不满足则不用在该位置添加新元素
while (index < nums.length && nums[index] <= sum)
{
sum += nums[index];
index++;
}
// 满足m+1的条件,则先判断原数组中是否存在m+1的元素,不存在则添加新元素
if (sum < n) {
if (index < nums.length && nums[index] == sum + 1)
index++;
else {
ans++;
}
sum = 2 * sum + 1;
}
}
return ans;
}
}
- 时间复杂度:O(n);空间复杂度:O(1)