Question
Given two integers n and k, you need to construct a list which contains n different positive integers ranging from 1 to n and obeys the following requirement:
Suppose this list is [a1, a2, a3, … , an], then the list [|a1 - a2|, |a2 - a3|, |a3 - a4|, … , |an-1 - an|] has exactly k distinct integers.
If there are multiple answers, print any of them.
Example 1:
Input: n = 3, k = 1
Output: [1, 2, 3]Explanation: The [1, 2, 3] has three different positive integers ranging from 1 to 3, and the [1, 1] has exactly 1 distinct integer: 1.
Example 2:
Input: n = 3, k = 2
Output: [1, 3, 2]Explanation: The [1, 3, 2] has three different positive integers ranging from 1 to 3, and the [2, 1] has exactly 2 distinct integers: 1 and 2.
Note:
- The n and k are in the range 1 <= k < n <= 104.
问题解析:
给定整数n和k,构造一个包含1-n的n个整数的数组[a1, a2, a3, … , an],使得[|a1 - a2|, |a2 - a3|, |a3 - a4|, … , |an-1 - an|] 新数组含有k个不同的数。
Answer
Solution 1:
二分法。
- 由题我们可知:1..n最多可以构造出n-1个不同的差,比如 1..9为:[1 9 2 8 3 7 4 6 5]
- 其相邻元素差的绝对值为:diff: 8 7 6 5 4 3 2 1
- 观察构造的数据,其是大小交替的。那么这样的话,我们只要先构造出前k个,后面按照顺序来产生1就可以了。
- 在后面顺序添加的时候注意,需要添加的是增序还是逆序。
- 如:以1..7为例:
- k=6:1 7 2 6 3 5 | 4
- k=5:1 7 2 6 3 | 4 5
- k=4:1 7 2 6 | 5 4 3
- k=3:1 7 2 | 3 4 5 6
- k=2:1 7 | 6 5 4 3 2
- k=1:1 | 2 3 4 5 6 7
class Solution {
public int[] constructArray(int n, int k) {
int[] ans = new int[n];
int l = 1, r = n;
int i = 0;
for (; i < k; i++){
if (i % 2 == 0) ans[i] = l++;
else ans[i] = r--;
}
if(i % 2 == 1){
for (int j = l; j <= r; j++) ans[i++] = j;
}else{
for (int j = r; j >= l; j--) ans[i++] = j;
}
return ans;
}
}
- 时间复杂度:O(n),空间复杂度:O(n)