Tobii pro lab学习笔记2_数据可视化

本文介绍了眼动数据可视化的两种主要形式——Heatmap热点图和Gaze plot轨迹图。Heatmap根据颜色深浅表示被试的观察时长,分为四种记录类型:绝对次数、相对次数、绝对注视时长和相对注视时长。Gaze plot通过圆圈大小展示注视时长,多被试情况可用颜色区分。此外,可以利用Participant Data筛选特定被试属性的信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据可视化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

可视化分为两大类,第一类是Heatmap热点图,第二类是Gaze plot轨迹图

对于热点图:颜色越深的地方,被试观察的越久

关于热点图的记录类型,有四种,绝对次数,相对次数,绝对注视时长,相对注视时长:
绝对和相对的区分在被试在同一个刺激物上面是否是相同观看了相同的时间,次数和注视时长的区分在于刺激材料的种类不同,如果是文字类的一般选择count类型,如果是图片类的刺激材料,一般选择duration类型
在这里插入图片描述
对于Gaze plot轨迹图,圆圈越大注视的时长就越长,数值也越大

如果有多个被试,可以用颜色区别不同被试的轨迹图
在这里插入图片描述
最下面的Participant Data可以通过被试的一些属性来过滤掉一些信息,获取需要的信息,比如某个年龄的被试轨迹图是怎么样的

除此之外,还可以右键保存这个图

### Tobii Pro 头部姿态数据采集与处理 #### 数据采集方式 Tobii Pro 系列仪通过高精度摄像头捕捉用户的面部特征点来推算头部位置和方向。设备内置算法能够实时跟踪睛运的同时也记录下相应的头部位移信息[^1]。 #### 数据格式 所获得的头部姿态数据通常包括三个角度参数——俯仰角(Pitch)、偏航角(Yaw)以及滚转角(Roll),这些数值描述了相对于初始状态下的旋转变化情况[^2]。 #### 数据预处理步骤 原始传感器读数可能含有噪声,在正式分析前需经过滤波平滑化操作以提高准确性;此外还需校准坐标系确保不同实验条件下的一致性[^3]。 ```python import numpy as np from scipy.signal import savgol_filter def preprocess_head_pose_data(raw_angles): """ 对原始头部姿态角度进行去噪和平滑处理. 参数: raw_angles (list of lists): 原始未处理的角度列表 [[pitch, yaw, roll], ...] 返回: list of lists: 经过Savitzky-Golay滤波后的角度列表 """ smoothed_angles = [] for angle_series in zip(*raw_angles): filtered_series = savgol_filter(angle_series, window_length=7, polyorder=2) smoothed_angles.append(filtered_series.tolist()) return list(map(list, zip(*smoothed_angles))) ``` #### 应用场景举例 此类数据广泛应用于虚拟现实交互设计中,使得计算机可以根据玩家的实际作调整视角显示效果;同时也可用于研究人类行为模式的心理学实验里作为辅助指标之一[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

行秋即离

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值