无重叠区间
题目:
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意:
可以认为区间的终点总是大于它的起点。
区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1:
输入: [ [1,2], [2,3], [3,4], [1,3] ]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:
输入: [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:
输入: [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
解题思路:先将数组按照左边界进行升序排序,再记录最小右边界,当某区间得左边界小于了维护的最小右边界时说明此时有区间重叠,要在两者之间选取一个较小的右区间来进行维护并删除两者中的一个区间
class Solution {
public int eraseOverlapIntervals(int[][] intervals) {
int len = intervals.length;
if(len == 0 || len == 1) {
return 0;
}
Arrays.sort(intervals, (a, b) -> {
return a[0] - b[0];
});
int ans = 0;
int cur = intervals[0][1];
for(int i = 1; i < len; i++) {
int[] tmp = intervals[i];
if(cur > tmp[0]) {
cur = Math.min(tmp[1], cur);
ans++;
} else {
cur = tmp[1];
}
}
return ans;
}
}