PAT [B1062 最简分数] C语言AC

题目:

一个分数一般写成两个整数相除的形式:N/M,其中 M 不为0。最简分数是指分子和分母没有公约数的分数表示形式。

现给定两个不相等的正分数 N1​/M1​ 和 N2​/M2​,要求你按从小到大的顺序列出它们之间分母为 K 的最简分数。

输入格式:

输入在一行中按 N/M 的格式给出两个正分数,随后是一个正整数分母 K,其间以空格分隔。题目保证给出的所有整数都不超过 1000。

输出格式:

在一行中按 N/M 的格式列出两个给定分数之间分母为 K 的所有最简分数,按从小到大的顺序,其间以 1 个空格分隔。行首尾不得有多余空格。题目保证至少有 1 个输出。

样例:">输入样例:

7/18 13/20 12

输出样例:

5/12 7/12

思路: 

分母K是固定的,分子是在N1​/M1*K和N2​/M2​*K之间的整数。遍历这之间的每一个整数,判断它是否与K有公因数,若没有则输出。

注意题目只说了N1​/M1和N2​/M2不同,但没有交代谁大,所以必须自行判断。

另外,这个思路下我用浮点数来表示N​/M。求分子for循环那里跳出条件必须是1.0*i/K<B,而不能是逻辑等价的1.0*i<K*B。猜测是浮点运算损失了精度。所以边界条件尽量不要用含浮点数的式子,如果一定要用,尽量减少对浮点数做运算的次数。

#include <stdio.h>
int gcd(int a,int b);
int main(void){
    int K,temp1,temp2;
    double A,B,C;
    scanf("%d/%d",&temp1,&temp2);
    A=1.0*temp1/temp2;
    scanf("%d/%d",&temp1,&temp2);
    B=1.0*temp1/temp2;
    scanf("%d",&K);
    if(A>B){
        C=A;
        A=B;
        B=C;
    }
    for(int i=A*K+1,cnt=0;1.0*i/K<B;i++){
        if(gcd(i,K)==1){
            if(cnt++) printf(" ");
            printf("%d/%d",i,K);
        }
    }
    return 0;
}
int gcd(int a,int b){
    return b==0?a:gcd(b,a%b);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值