题目:
一个分数一般写成两个整数相除的形式:N/M,其中 M 不为0。最简分数是指分子和分母没有公约数的分数表示形式。
现给定两个不相等的正分数 N1/M1 和 N2/M2,要求你按从小到大的顺序列出它们之间分母为 K 的最简分数。
输入格式:
输入在一行中按 N/M 的格式给出两个正分数,随后是一个正整数分母 K,其间以空格分隔。题目保证给出的所有整数都不超过 1000。
输出格式:
在一行中按 N/M 的格式列出两个给定分数之间分母为 K 的所有最简分数,按从小到大的顺序,其间以 1 个空格分隔。行首尾不得有多余空格。题目保证至少有 1 个输出。
样例:">输入样例:
7/18 13/20 12
输出样例:
5/12 7/12
思路:
分母K是固定的,分子是在N1/M1*K和N2/M2*K之间的整数。遍历这之间的每一个整数,判断它是否与K有公因数,若没有则输出。
注意题目只说了N1/M1和N2/M2不同,但没有交代谁大,所以必须自行判断。
另外,这个思路下我用浮点数来表示N/M。求分子for循环那里跳出条件必须是1.0*i/K<B,而不能是逻辑等价的1.0*i<K*B。猜测是浮点运算损失了精度。所以边界条件尽量不要用含浮点数的式子,如果一定要用,尽量减少对浮点数做运算的次数。
#include <stdio.h>
int gcd(int a,int b);
int main(void){
int K,temp1,temp2;
double A,B,C;
scanf("%d/%d",&temp1,&temp2);
A=1.0*temp1/temp2;
scanf("%d/%d",&temp1,&temp2);
B=1.0*temp1/temp2;
scanf("%d",&K);
if(A>B){
C=A;
A=B;
B=C;
}
for(int i=A*K+1,cnt=0;1.0*i/K<B;i++){
if(gcd(i,K)==1){
if(cnt++) printf(" ");
printf("%d/%d",i,K);
}
}
return 0;
}
int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
}