【树剖】P3384 【模板】轻重链剖分/树链剖分

本文详细介绍了树链剖分和线段树的数据结构及其在解决树上路径操作和子树操作问题中的应用。通过实例展示了如何使用树剖+线段树来处理求和、改值等操作,并提供了完整的C++代码实现。内容包括两次DFS的实现、轻重链划分、线段树的构建和查询更新等关键步骤。
摘要由CSDN通过智能技术生成

P3384 【模板】轻重链剖分/树链剖分P3384 【模板】轻重链剖分/树链剖分

树链剖分

可能要树剖的题目特点:对树上路径进行操作,对子树进行操作。

本题需要对树上路径进行求和改值,对子树进行求和与改值操作。因此使用树剖+线段树来进行

线段树直接板子无修改,注意建树时用的权值是经过dfs序排序后的权值。

在建树后我们需要进行两次树上dfs,这两次dfs有着不同的目的,且需要注意先后顺序

        dfs1:第一次dfs需要将所有一次dfs可以查出的数据查出,深度,节点的父亲可以记录,同时子树的大小也可以求出,最后轻重链也可以划分出来 ,即儿子中子树最大的为当前节点的重儿子节点。

        dfs2:一条重链可以由每个节点的重儿子连接,但是其顶点节点需要我们记录,当一个节点没有重儿子时就表明走到头了,return。同时注意我们要记录每个节点的id,即节点与dfs序的关系,同时注意为方便建立线段树,我们要将现在的节点权值用dfs序排列,wt【i】=w【x】。

        在更新范围节点时,我们可以将深度较深的节点在两端点不在(o´ω`o)同一重链时直接更新一整条重链,然后把节点向顶点的父亲更新,然后再判断,当到达同一重链时直接更新两个端点,注意缺点好两点的深度。(范围查询同理)

        在更新节点子树时,只需要更新节点到它子树大小-1即可。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<math.h>
#include <stack>
#include<map>
#include<stdlib.h>
#include<queue>
#define LL long long
using namespace std;
const int N=2e5+10,M=1e4+10,inf=0x3f3f3f3f;
const LL INF=1e18;
int n,m,r,mod;
int ecnt,head[N],nxt[N],to[N],w[N],wt[N];
int atre[N<<2],lazy[N<<2];
int son[N],dep[N],fa[N],cnt,id[N],top[N],siz[N];
int res=0;
void addtre(int x,int y) {
	to[++ecnt]=y;
	nxt[ecnt]=head[x];
	head[x]=ecnt;
}

void pushdown(int rt,int l,int r) {
	int mid=l+((r-l)>>1);
	lazy[rt<<1]+=lazy[rt];
	lazy[rt<<1|1]+=lazy[rt];
	atre[rt<<1]+=1LL*lazy[rt]*(mid-l+1);
	atre[rt<<1|1]+=1LL*lazy[rt]*(r-mid);
	atre[rt<<1]%=mod;
	atre[rt<<1|1]%=mod;
	lazy[rt]=0;
}
void pushup(int rt) {
	atre[rt]=(atre[rt<<1]+atre[rt<<1|1])%mod;
}
void build(int rt,int l,int r) {
	if(r==l) {
		atre[rt]=wt[l];
		return;
	}
	int mid=l+((r-l)>>1);
	build(rt<<1,l,mid);
	build(rt<<1|1,mid+1,r);
	pushup(rt);
}
int query(int rt,int l,int r,int L,int R) {
	if(L<=l&&r<=R) {
		return atre[rt];
	}
	LL sum=0;
	int mid=l+((r-l)>>1);
	if(lazy[rt])pushdown(rt,l,r);
	if(L<=mid)sum+=query(rt<<1,l,mid,L,R);
	sum%=mod;
	if(R>mid)sum+=query(rt<<1|1,mid+1,r,L,R);
	return sum%mod;
}
void update(int rt,int l,int r,int L,int R,int k) {
	if(L<=l&&r<=R) {
		lazy[rt]+=k;
		atre[rt]+=1LL*k*(r-l+1);
		return;
	}
	int mid=l+((r-l)>>1);
	if(lazy[rt])pushdown(rt,l,r);
	if(L<=mid)update(rt<<1,l,mid,L,R,k);
	if(R>mid)update(rt<<1|1,mid+1,r,L,R,k);
	pushup(rt);
}
int qrange(int x,int y) {
	int ans=0;
	while(top[x]!=top[y]) {
		if(dep[top[x]]<dep[top[y]])swap(x,y);
		res=query(1,1,n,id[top[x]],id[x]);
		ans+=res;
		ans%=mod;
		x=fa[top[x]];
	}
	if(dep[x]>dep[y])swap(x,y);
	res=query(1,1,n,id[x],id[y]);
	ans+=res;
	ans%=mod;
	return ans;
}
void updrange(int x,int y,int k) {
	k%=mod;
	while(top[x]!=top[y]) {
		if(dep[top[x]]<dep[top[y]])swap(x,y);
		update(1,1,n,id[top[x]],id[x],k);
		x=fa[top[x]];
	}
	if(dep[x]>dep[y])swap(x,y);
	update(1,1,n,id[x],id[y],k);
}

int qson(int x) {
	res=query(1,1,n,id[x],id[x]+siz[x]-1);
	res%mod;
	return res;
}
void updson(int x,int k) {
	update(1,1,n,id[x],id[x]+siz[x]-1,k);
}
void dfs1(int x,int f,int deep) {
	dep[x]=deep;
	fa[x]=f;
	siz[x]=1;
	int maxson=-1;
	for(int i=head[x]; i; i=nxt[i]) {
		int y=to[i];
		if(y==f) {
			continue;
		}
		dfs1(y,x,deep+1);
		siz[x]+=siz[y];
		if(siz[y]>maxson)son[x]=y,maxson=siz[y];
	}
}

void dfs2(int x,int topf){
	id[x]=++cnt;
	wt[cnt]=w[x];
	top[x]=topf;
	if(!son[x])return;
	dfs2(son[x],topf);
	for(int i=head[x];i;i=nxt[i]){
		int y=to[i];
		if(y==fa[x]||y==son[x])continue;
		dfs2(y,y);
	}
}
int main(){
	scanf("%d%d%d%d",&n,&m,&r,&mod);
	for(int i=1;i<=n;i++){
		scanf("%d",&w[i]);
	}
	for(int i=1;i<n;i++){
		int a,b;
		scanf("%d%d",&a,&b);
		addtre(a,b);
		addtre(b,a);
	}
	dfs1(r,0,1);
	dfs2(r,r);
	build(1,1,n);
	while(m--){
		int k,x,y,z;
		scanf("%d",&k);
		if(k==1){
			scanf("%d%d%d",&x,&y,&z);
			updrange(x,y,z);
		}
		else if(k==2){
			scanf("%d%d",&x,&y);
			printf("%d\n",qrange(x,y));
		}
		else if(k==3){
			scanf("%d%d",&x,&y);
			updson(x,y);
		}
		else{
			scanf("%d",&x);
			printf("%d\n",qson(x));
		}
	}
}

P3384 【模板】轻重链剖分/树链剖分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值