线性DP
一 题意
有确定的括号序列n,构造合法的括号序列m,求方案数.
二 思路
构造序列的方案数,首先便考虑DP,而一般的dp[i][j]表示a的第j个匹配b的第i个,但是括号序列要求合法,因此我们便有了第三维k便是左括号的个数,因为dp[i][j]是表示的i是已经匹配好的合法序列,所以不允许出现k<0的情况,这种是不合法的.
转移过程中需要考虑j=0(a序列未开始匹配b序列,在其左左端加括号),匹配括号(区分左右括号对k的影响)以及k=0(此时只能匹配左括号或者添加左括号)的情况下的转移.
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<math.h>
#include <stack>
#include<map>
#include<set>
#include<stdlib.h>
#include<queue>
#define LL long long
#define re register
using namespace std;
const int N=210,M=1e4+10,inf=0x3f3f3f3f;
const LL INF=1e18,mod=1e9+7;
int dp[N][N][N];
int T,a,b;
char s[300];
int solve() {
scanf("%d%d",&a,&b);
scanf("%s",s+1);
for(int i=0; i<=b; i++) {
for(int j=0; j<=a; j++) {
for(int k=0; k<b; k++) {
dp[i][j][k]=0;
}
}
}
dp[0][0][0]=1;
for(int i=1; i<=b; i++) {
int t1=min(a,i);
for(int j=0; j<=t1; j++) {
for(int k=0; k<=b; k++) {
if(j==0) {
if(k)
dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k-1])%mod;
dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k+1])%mod;
}
else if(s[j]=='('){
if(k)
dp[i][j][k]=(dp[i][j][k]+dp[i-1][j-1][k-1])%mod;
dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k+1])%mod;
}else{
if(k)
dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k-1])%mod;
dp[i][j][k]=(dp[i][j][k]+dp[i-1][j-1][k+1])%mod;
}
}
}
}
return dp[b][a][0];
}
int main() {
scanf("%d",&T);
while(T--) {
printf("%d\n",solve());
}
return 0;
}