【DP 构造方案】Link with Bracket Sequence I

Link with Bracket Sequence I

线性DP

一 题意

        有确定的括号序列n,构造合法的括号序列m,求方案数.

二 思路

        构造序列的方案数,首先便考虑DP,而一般的dp[i][j]表示a的第j个匹配b的第i个,但是括号序列要求合法,因此我们便有了第三维k便是左括号的个数,因为dp[i][j]是表示的i是已经匹配好的合法序列,所以不允许出现k<0的情况,这种是不合法的.

        转移过程中需要考虑j=0(a序列未开始匹配b序列,在其左左端加括号),匹配括号(区分左右括号对k的影响)以及k=0(此时只能匹配左括号或者添加左括号)的情况下的转移.

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<math.h>
#include <stack>
#include<map>
#include<set>
#include<stdlib.h>
#include<queue>
#define LL long long
#define re register
using namespace std;
const int N=210,M=1e4+10,inf=0x3f3f3f3f;
const LL INF=1e18,mod=1e9+7;
int dp[N][N][N];
int T,a,b;
char s[300];
int solve() {
	scanf("%d%d",&a,&b);
	scanf("%s",s+1);
	for(int i=0; i<=b; i++) {
		for(int j=0; j<=a; j++) {
			for(int k=0; k<b; k++) {
				dp[i][j][k]=0;
			}
		}
	}
	dp[0][0][0]=1;
	for(int i=1; i<=b; i++) {
		int t1=min(a,i);
		for(int j=0; j<=t1; j++) {
			for(int k=0; k<=b; k++) {
				if(j==0) {
					if(k)
						dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k-1])%mod;
					dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k+1])%mod;
				}
				else if(s[j]=='('){
					if(k)
						dp[i][j][k]=(dp[i][j][k]+dp[i-1][j-1][k-1])%mod;
					dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k+1])%mod;
				}else{
					if(k)
						dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k-1])%mod;
					dp[i][j][k]=(dp[i][j][k]+dp[i-1][j-1][k+1])%mod;
				}
			}
		}
	}
	return dp[b][a][0];
}

int main() {
	scanf("%d",&T);
	while(T--) {
		printf("%d\n",solve());
	}
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值