题目链接:P1880 [NOI1995]石子合并
程序说明:
这道题和P1090 合并果子有些类似,但合并果子的过程是构造一棵哈夫曼树,而这道题是只能合并相邻的石子,通过模拟可以证明贪心得到的答案是错的,因此用动态规划来做。
设dp[l][r]表示从 l 到 r 区间合并石子的代价的最小值,用k来划分区间,每次合并都终归于把 l 到 k - 1 和 k 到 r 两个子区间合并,然后加上区间的和(预处理前缀和)。
环不太容易处理,可以把环拆成链来做,相当于把环断开以后再复制一遍加在后面,这样就可以保证每个区间都能在2n的长度内取到。
代码如下:
#include <iostream>
using namespace std;
const int N = 310, INF = 1e9;
int w[N], s[N], dp1[N][N], dp2[N][N], n;
int main() {
cin>>n;
for(int i = 1; i <= n; i++) {
cin>>w[i];
w[i + n] = w[i];
}
for(int i = 1; i <= 2 * n; i++)
s[i] = s[i - 1] + w[i];
for(int len = 2; len <= n; len++) {
for(int l = 1; l <= n * 2 - len + 1; l++) {
int r = l + len - 1;
dp1[l][r] = INF;
dp2[l][r] = -INF;
for(int k = l; k < r; k++) {
dp1[l][r] = min(dp1[l][r], dp1[l][k] + dp1[k + 1][r] + s[r] - s[l - 1]);
dp2[l][r] = max(dp2[l][r], dp2[l][k] + dp2[k + 1][r] + s[r] - s[l - 1]);
}
}
}
int res1 = INF;
int res2 = -INF;
for(int i = 1; i <= n; i++) {
res1 = min(res1, dp1[i][i + n - 1]);
res2 = max(res2, dp2[i][i + n - 1]);
}
cout<<res1<<endl;
cout<<res2<<endl;
return 0;
}