洛谷P1880 [NOI1995]石子合并【区间DP】

题目链接:P1880 [NOI1995]石子合并

程序说明:

这道题和P1090 合并果子有些类似,但合并果子的过程是构造一棵哈夫曼树,而这道题是只能合并相邻的石子,通过模拟可以证明贪心得到的答案是错的,因此用动态规划来做。

设dp[l][r]表示从 l 到 r 区间合并石子的代价的最小值,用k来划分区间,每次合并都终归于把 l 到 k - 1 和 k 到 r 两个子区间合并,然后加上区间的和(预处理前缀和)。

环不太容易处理,可以把环拆成链来做,相当于把环断开以后再复制一遍加在后面,这样就可以保证每个区间都能在2n的长度内取到。

代码如下:

#include <iostream>
using namespace std;

const int N = 310, INF = 1e9;

int w[N], s[N], dp1[N][N], dp2[N][N], n;

int main() {
	cin>>n;
	for(int i = 1; i <= n; i++) {
		cin>>w[i];
		w[i + n] = w[i];
	}
	
	for(int i = 1; i <= 2 * n; i++)
		s[i] = s[i - 1] + w[i];
		
	for(int len = 2; len <= n; len++) {
		for(int l = 1; l <= n * 2 - len + 1; l++) {
			int r = l + len - 1;
			dp1[l][r] = INF;
			dp2[l][r] = -INF;
			for(int k = l; k < r; k++) {
				dp1[l][r] = min(dp1[l][r], dp1[l][k] + dp1[k + 1][r] + s[r] - s[l - 1]);
				dp2[l][r] = max(dp2[l][r], dp2[l][k] + dp2[k + 1][r] + s[r] - s[l - 1]);
			}				
		}
	} 
	
	int res1 = INF;
	int res2 = -INF;
	for(int i = 1; i <= n; i++) {
		res1 = min(res1, dp1[i][i + n - 1]);
		res2 = max(res2, dp2[i][i + n - 1]);
	}
		
	cout<<res1<<endl;
	cout<<res2<<endl;
	return 0;
} 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值