蓝桥杯 分巧克力【二分】

这篇博客讨论了一个编程问题,即如何在保证公平的前提下,将不同大小的长方形巧克力切分成相同大小的正方形,使得每个小朋友都能获得至少1×1的巧克力,并求出最大可能的正方形边长。通过二分查找算法,确定了最大边长为2,以满足题目所给的输入样例。
摘要由CSDN通过智能技术生成

题目链接:AcWing 1227. 分巧克力

儿童节那天有 K位小朋友到小明家做客。

小明拿出了珍藏的巧克力招待小朋友们。

小明一共有 N块巧克力,其中第 i 块是 Hi×Wi的方格组成的长方形。

为了公平起见,小明需要从这 N块巧克力中切出 K块巧克力分给小朋友们。

切出的巧克力需要满足:

形状是正方形,边长是整数
大小相同

例如一块 6×5的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?

输入格式

第一行包含两个整数 N和 K。

以下 N行每行包含两个整数 Hi 和 Wi。

输入保证每位小朋友至少能获得一块 1×1的巧克力。

输出格式

输出切出的正方形巧克力最大可能的边长。

数据范围

1≤N,K≤105,1≤Hi,Wi≤105

输入样例:

2 10
6 5
5 6

输出样例:

2

#include <iostream>
using namespace std;
const int N = 100010;
int a[N], b[N], n, k;
//返回能分多少块巧克力
int check(int k) {
    int sum = 0;
    for(int i = 0; i < n; i++) 
        sum += (a[i] / k) * (b[i] / k);
    return sum;
}
int main() {
    cin>>n>>k;
    for(int i = 0; i < n; i++)
        cin>>a[i]>>b[i];
    int l = 0, r = N;
    while(l < r) {
       int mid = l + r + 1 >> 1;
       if(check(mid) >= k) l = mid;
       else r = mid - 1;
    }
    cout<<l<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值