蓝桥杯 牌型种数【DFS】

小明被劫持到X赌城,面对困境,他思考起数学问题。若不考虑花色和顺序,从52张牌中发13张给一人,求可能的组合数。通过递归 dfs 算法,得出答案为3598180。此问题展示了组合数学在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?

请填写该整数,不要填写任何多余的内容或说明文字。

答案:3598180

程序说明:

dfs有两个参数,cnt记录选了多少张牌,k记录递归了多少层(分析可知最多不能超过13层)。cnt等于13时代表正好凑够了13张牌,res就加一。当拿到的牌数大于13,或者递归超过了13层则return。

对于每张牌有五种情况:选0张,选1张至选4张,依次遍历每种情况然后递归即可。

代码如下:

#include <iostream>
using namespace std;
int res;

void dfs(int cnt, int k) {
    if(cnt == 13) {
        res++;
        return;
    }
    if(cnt > 13 || k == 13) {
        return;
    }
    for(int i = 0; i <= 4; i++) 
        dfs(cnt + i, k + 1);
}
int main() {
    dfs(0, 0);
    cout<<res;
    return 0;
}
<think>好的,用户想了解蓝桥杯竞赛中DFS算法的实现示例。首先,我需要回顾DFS的基本概念,确保自己理解正确。DFS是深度优先搜索,主要用于遍历或搜索树、图结构,通过递归或栈实现,尽可能深地探索分支,再回溯。 接下来,用户可能希望看到具体的代码示例,尤其是Python实现的,因为蓝桥杯常用Python。我需要找一个典DFS问题,比如全排列、迷宫问题或N皇后,这些在竞赛中常见。 然后,得考虑如何结构化解题步骤,让用户明白DFS的应用过程。比如全排列问题,可以通过递归生成所有可能的排列,每一步择一个数字,标记已使用,递归结束后回溯状态。 还需要注意代码的注释和解释,确保用户理解每部分的作用。例如,在递归函数中维护当前路径、已访问数组等,递归终止条件是什么,如何遍历所有可能的择。 同时,用户可能对DFS的时间复杂度、优化方法感兴趣,但问题主要是实现示例,所以先提供基础代码,再在相关问题中扩展。 还要检查引用内容,确保提到的DFS定义与引用来源一致,比如引用[2]和[3]中的描述,说明DFS的工作原理和实现方式。 最后,生成相关问题,帮助用户进一步学习,比如DFS与BFS的区别、剪枝技巧、蓝桥杯中的典题目等,这样用户可以有方向地深入。</think>### 蓝桥杯竞赛中DFS算法实现示例 #### 1. DFS核心思想 深度优先搜索(DFS)通过递归或栈实现“一条路走到黑”的搜索策略,回溯时遍历所有可能路径。其核心步骤为: 1. 择当前状态下的一个子状态 2. 递归进入该子状态 3. 返回后撤销择(回溯) #### 2. 典应用场景 - 全排列问题 - 组合数问题 - 迷宫路径搜索 - N皇后问题 - 图的连通性判断 #### 3. 基础实现模板(Python) ```python def dfs(当前状态): if 终止条件: 记录结果/处理答案 return for 所有可能的择 in 当前状态的可分支: if 剪枝条件: # 提前排除无效路径 continue 记录择(如标记已访问) dfs(新状态) 撤销择(回溯) ``` #### 4. 经典案例:全排列问题 实现数字1-3的全排列: ```python res = [] used = [False] * 3 # 标记数字是否已使用 path = [] # 当前路径 def backtrack(): if len(path) == 3: res.append(path.copy()) # 深拷贝保存结果 return for i in range(3): if not used[i]: used[i] = True path.append(i+1) backtrack() path.pop() # 回溯 used[i] = False backtrack() print(res) # 输出 [[1,2,3],[1,3,2],...,[3,2,1]] ``` #### 5. 蓝桥杯真题示例:迷宫路径计数 假设迷宫为5x5网格(0可走,1为障碍): ```python maze = [ [0,1,0,0,0], [0,1,0,1,0], [0,0,0,0,0], [0,1,1,1,0], [0,0,0,1,0] ] directions = [(-1,0),(1,0),(0,-1),(0,1)] # 上下左右 count = 0 def dfs(x, y): global count if x == 4 and y == 4: # 到达终点 count += 1 return for dx, dy in directions: nx, ny = x+dx, y+dy if 0<=nx<5 and 0<=ny<5 and maze[nx][ny]==0: maze[x][y] = 1 # 标记已访问 dfs(nx, ny) maze[x][y] = 0 # 回溯 dfs(0,0) print("总路径数:", count) # 输出具体数值需实际运行 ``` #### 6. 关键优化技巧 1. **剪枝策略**:提前排除不可能的解路径(如越界、重复访问) 2. **记忆化搜索**:存储已计算的状态结果,避免重复计算 3. **方向优化**:按特定顺序尝试路径(如优先向下、向右) 4. **状态压缩**:使用位运算优化状态存储[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值