字符串-KMP
作用:在一个文本字符串中找模式字符串出现次数、位置。
前缀知识:
字符串
\color{#60d000}\texttt{字符串}
字符串。
算法名字来源:发明人
Knuth(D.E.Knuth)&Morris(J.H.Morris)&Pratt(V.R.Pratt)
\texttt{Knuth(D.E.Knuth)\&Morris(J.H.Morris)\&Pratt(V.R.Pratt)}
Knuth(D.E.Knuth)&Morris(J.H.Morris)&Pratt(V.R.Pratt)。
讲解:
比如要在文本字符串 a = ababaababaabab a=\texttt{ababaababaabab} a=ababaababaabab 中找模式字符串 b = abaabab b=\texttt{abaabab} b=abaabab,暴力的做法就是枚举 a [ i ] = = b [ 1 ] a[i]==b[1] a[i]==b[1],然后对 a [ i ∼ i + l e n ( b ) − 1 ] a[i\sim i+len(b)-1] a[i∼i+len(b)−1] 和 b [ 1 ∼ l e n ( b ) ] b[1\sim len(b)] b[1∼len(b)] 进行匹配,代码:
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int n,m,ans;
char a[N],b[N];
int main(){
scanf("%s%s",a+1,b+1);
n=strlen(a+1),m=strlen(b+1);
for(int i=1;i<=n-m+1;i++)
if(a[i]==b[1]){
bool ok=1;
for(int j=2;j<=m;j++)
if(a[i+j-1]!=b[j]){ok=0;break;} //#
if(ok) ans++;
}
printf("%d\n",ans);
return 0;
}
时间复杂度为 Θ ( n × m ) \Theta(n\times m) Θ(n×m),爆率百分百。而 Θ ( n + m ) \Theta(n+m) Θ(n+m) 的KMP的精华就在于,每次上面代码标记的那行失配(匹配失败, a [ i + j − 1 ] ! = b [ j ] a[i+j-1]!=b[j] a[i+j−1]!=b[j])以后,不需要让模式串 b b b 从头开始匹配,而是跳到一个固定的位置,开始匹配。
如下,灰色表示待匹配,绿色表示正在匹配(成功),红色表示正在匹配(失败),黑色表示已经匹配:
ababaababaabab \color{gray}\texttt{ababaababaabab} ababaababaabab
abaabab \color{gray}\texttt{abaabab} abaabab
a babaababaabab \color{#60c000}\texttt{a}\color{gray}\texttt{babaababaabab} ababaababaabab
a baabab \color{#60c000}\texttt{a}\color{gray}\texttt{baabab} abaabab
a b abaababaabab \color{black}\texttt{a}\color{#60c000}\texttt{b}\color{gray}\texttt{abaababaabab} ababaababaabab
a b aabab \color{black}\texttt{a}\color{#60c000}\texttt{b}\color{gray}\texttt{aabab} abaabab
ab a baababaabab \color{black}\texttt{ab}\color{#60c000}\texttt{a}\color{gray}\texttt{baababaabab} ababaababaabab
ab a abab \color{black}\texttt{ab}\color{#60c000}\texttt{a}\color{gray}\texttt{abab} abaabab
aba b aababaabab \color{black}\texttt{aba}\color{red}\texttt{b}\color{gray}\texttt{aababaabab} ababaababaabab
aba a bab \color{black}\texttt{aba}\color{red}\texttt{a}\color{gray}\texttt{bab} abaabab
文本串和模式串失配,不需要如下让模式串 b b b 从头开始匹配:
a b abaababaabab \color{black}\texttt{a}\color{red}\texttt{b}\color{gray}\texttt{abaababaabab} ababaababaabab
a baabab \color{red}\texttt{ a}\color{gray}\texttt{baabab} abaabab ←错误示范
而是应该这样:
aba b aababaabab \color{black}\texttt{aba}\color{#60c000}\texttt{b}\color{gray}\texttt{aababaabab} ababaababaabab
a b aabab \color{black}\texttt{~~a}\color{#60c000}\texttt{b}\color{gray}\texttt{aabab} abaabab
这时我能感受到你诧异的表情,这不是玄学穿越,而是有依据的。对于模式串
b
b
b 成功匹配的前三个字符
aba
\texttt{aba}
aba,满足该字符串最多前
1
1
1 个字符等于后
1
1
1 个字符,而前
2
2
2 个字符就不等于后
2
2
2 个字符了。所以这时,就可以知道两点:
1.
b
b
b 的前
1
1
1 个字符能和
a
a
a 的第
3
∼
3
3\sim 3
3∼3 个字符匹配。
2.如果把
b
b
b 的第
1
1
1 个字符对
a
a
a 的第
2
∼
2
2\sim 2
2∼2 个字符,必将不会整个匹配成功。
所以根据 b b b 前 3 3 3 个字符组成的子串中最多前几个字符等于后几个字符,就可以得出失配后跳转的方法。为了更全面具体的解说,看如下继续匹配:
abab a ababaabab \color{black}\texttt{abab}\color{#60c000}\texttt{a}\color{gray}\texttt{ababaabab} ababaababaabab
ab a abab \color{black}\texttt{~~ab}\color{#60c000}\texttt{a}\color{gray}\texttt{abab} abaabab
ababa a babaabab \color{black}\texttt{ababa}\color{#60c000}\texttt{a}\color{gray}\texttt{babaabab} ababaababaabab
aba a bab \color{black}\texttt{~~aba}\color{#60c000}\texttt{a}\color{gray}\texttt{bab} abaabab
ababaa b abaabab \color{black}\texttt{ababaa}\color{#60c000}\texttt{b}\color{gray}\texttt{abaabab} ababaababaabab
abaa b ab \color{black}\texttt{~~abaa}\color{#60c000}\texttt{b}\color{gray}\texttt{ab} abaabab
ababaab a baabab \color{black}\texttt{ababaab}\color{#60c000}\texttt{a}\color{gray}\texttt{baabab} ababaababaabab
abaab a b \color{black}\texttt{~~abaab}\color{#60c000}\texttt{a}\color{gray}\texttt{b} abaabab
ababaaba b aabab \color{black}\texttt{ababaaba}\color{#60c000}\texttt{b}\color{gray}\texttt{aabab} ababaababaabab
abaaba b \color{black}\texttt{~~abaaba}\color{#60c000}\texttt{b} abaabab
如上,成功发现了一个模式串 b b b 在文本串 a a a 中出现的位置。这时候就不能在再沿着 b b b 继续匹配下去了,所以也可以看作是失配。因为对于字符串 b b b 的成功匹配的前 7 7 7 个字符组成的字符串,满足前两个字符等于后两个字符等于 ab \texttt{ab} ab,所以这么跳转匹配:
ababaabab a abab \color{black}\texttt{ababaabab}\color{#60c000}\texttt{a}\color{gray}\texttt{abab} ababaababaabab
ab a abab \color{black}\texttt{~~~~~~~ab}\color{#60c000}\texttt{a}\color{gray}\texttt{abab} abaabab
ababaababa a bab \color{black}\texttt{ababaababa}\color{#60c000}\texttt{a}\color{gray}\texttt{bab} ababaababaabab
aba a bab \color{black}\texttt{~~~~~~~aba}\color{#60c000}\texttt{a}\color{gray}\texttt{bab} abaabab
ababaababaa b ab \color{black}\texttt{ababaababaa}\color{#60c000}\texttt{b}\color{gray}\texttt{ab} ababaababaabab
abaa b ab \color{black}\texttt{~~~~~~~abaa}\color{#60c000}\texttt{b}\color{gray}\texttt{ab} abaabab
ababaababaab a b \color{black}\texttt{ababaababaab}\color{#60c000}\texttt{a}\color{gray}\texttt{b} ababaababaabab
abaab a b \color{black}\texttt{~~~~~~~abaab}\color{#60c000}\texttt{a}\color{gray}\texttt{b} abaabab
ababaababaaba b \color{black}\texttt{ababaababaaba}\color{#60c000}\texttt{b} ababaababaabab
abaaba b \color{black}\texttt{~~~~~~~abaaba}\color{#60c000}\texttt{b} abaabab
然后又发现一个模式串 b b b 在文本串 a a a 中出现的位置,并且所有 a a a 的所有字符都已经匹配结束,所以结束匹配。最终得出, b b b 在 a a a 中出现了 2 2 2 次,两次中 b b b 的第一个字符分别对应 a a a 的第 3 3 3 个和第 8 8 8 个字符。
所以如果我们现在已经有数组 n e x [ x ] nex[x] nex[x] 表示 b b b 的前 x x x 个字符所组成的字符串中,最多前 n e x [ x ] nex[x] nex[x] 个字符与后 n e x [ x ] nex[x] nex[x] 个字符完全一样( 0 ≤ n e x [ x ] < x 0\le nex[x]< x 0≤nex[x]<x),那么匹配的代码就可以这么写:
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10;
class charstar{ //字符串
//个人比较喜欢用class,如果不懂可以去查查class的用法
public:char arr[N];
int len;
char& operator[](int x){return arr[x];}
void leng(){len=strlen(arr+1);}
}a;
class KMP:public charstar{
public:
int nex[N];
void build(){
//构造nex[]数组的函数先不说
}
void found(charstar&book,queue<int>&q){//book表示a,arr表示b本身
for(int i=1,j=0;i<=book.len;i++){
while(j&&book[i]!=arr[j+1]) j=nex[j];
if(book[i]==arr[j+1]) j++;
if(j==len) q.push(i-len+1),j=nex[j];
}
}
}b;
queue<int> ans;
int main(){
scanf("%s%s",&a[1],&b[1]);
a.leng(),b.leng();
b.build(),b.found(a,ans);
while(ans.size()) printf("%d\n",ans.front()),ans.pop();//输出每次成功匹配时b[1]对应a[几]
for(int i=1;i<=b.len;i++) printf("%d%c",b.nex[i],"\n "[i<b.len]);
return 0;
}
这样的算法时间复杂度是 Θ ( n + m ) \Theta(n+m) Θ(n+m) 的,为了保证复杂度,求 n e x [ ] nex[] nex[] 数组也必须 Θ ( m + m ) \Theta(m+m) Θ(m+m)。聪明的三个科学家想到了一个很微妙的方法—— b b b 自己匹配自己。这就难解释了,放代码:
void build(){
//nex[1]=0; 因为main外定义的数组值默认为0,0<=nex[i]<i
for(int i=2,j=0;i<=len;i++){
while(j&&arr[j+1]!=arr[i]) j=nex[j];
if(arr[j+1]==arr[i]) j++;
nex[i]=j;
}
}
和上面的匹配几乎一模一样。
如果你懂了,蒟蒻就放代码了:
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10;
class charstar{
public:char arr[N];
int len;
char& operator[](int x){return arr[x];}
void leng(){len=strlen(arr+1);}
}a;
class KMP:public charstar{
public:
int nex[N];
void build(){
for(int i=2,j=0;i<=len;i++){
while(j&&arr[j+1]!=arr[i]) j=nex[j];
if(arr[j+1]==arr[i]) j++;
nex[i]=j;
}
}
void found(charstar&book,queue<int>&q){
for(int i=1,j=0;i<=book.len;i++){
while(j&&book[i]!=arr[j+1]) j=nex[j];
if(book[i]==arr[j+1]) j++;
if(j==len) q.push(i-len+1),j=nex[j];
}
}
}b;
queue<int> ans;
int main(){
scanf("%s%s",&a[1],&b[1]);
a.leng(),b.leng();
b.build(),b.found(a,ans);
while(ans.size()) printf("%d\n",ans.front()),ans.pop();
for(int i=1;i<=b.len;i++) printf("%d%c",b.nex[i],"\n "[i<b.len]);
return 0;
}
如果你看不惯这种匹配双重循环的版本,另一个版本:
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10;
class charstar{
public:char arr[N];
int len;
char& operator[](int x){return arr[x];}
void leng(){len=strlen(arr+1);}
}s1;
class KMP:public charstar{
public:
int nex[N];
void build(){
for(int i=1,j=0;i<=len;)
if(!j||arr[i]==arr[j]) nex[++i]=++j;
else j=nex[j];
}
void found(charstar&book,queue<int>&q){
for(int i=1,j=1;i<=book.len;){
if(!j||book[i]==arr[j]) i++,j++;
else j=nex[j];
if(j==len+1) q.push(i-len),j=nex[j];
}
}
}s2;
queue<int> ans;
int main(){
scanf("%s%s",&s1[1],&s2[1]);
s1.leng(),s2.leng();
s2.build(),s2.found(s1,ans);
while(ans.size()) printf("%d\n",ans.front()),ans.pop();
for(int i=1;i<=s2.len;i++) printf("%d%c",s2.nex[i+1]-1,"\n "[i<s2.len]);
return 0;
}
字符串学习之路(
★
\texttt{★}
★ 表示当前学习知识):
hash
-
kmp
★
-
manacher
-
exkmp
-
trie
-
acam
-
sa
-
sam
-
pam
\color{#cccccc}\texttt{hash}\color{#aaaaff}\texttt{-}\color{#8888ff}\texttt{kmp}\color{#000000}\texttt{★}\color{#88cccc}\texttt{-}\color{#88ff88}\texttt{manacher}\color{#cccc88}\texttt{-}\color{#dddd44}\texttt{exkmp}\color{#eeaa44}\texttt{-}\color{#ffaa00}\texttt{trie}\color{#ff8800}\texttt{-}\color{#ee2200}\texttt{acam}\color{#ee0088}\texttt{-}\color{#cc00ff}\texttt{sa}\color{#660077}\texttt{-}\color{#555555}\texttt{sam}\color{#272727}\texttt{-}\color{#000000}\texttt{pam}
hash-kmp★-manacher-exkmp-trie-acam-sa-sam-pam
祝大家学习愉快!