字符串-KMP

KMP算法是一种在文本字符串中查找模式字符串出现次数和位置的有效方法,避免了暴力匹配的时间复杂度问题。通过预处理得到next数组,可以在失配时直接跳转到正确位置继续匹配,实现时间复杂度为Θ(n+m)。本文详细解释了KMP算法的工作原理,并提供了匹配代码示例。
摘要由CSDN通过智能技术生成

字符串-KMP

作用:在一个文本字符串中找模式字符串出现次数、位置。
前缀知识: 字符串 \color{#60d000}\texttt{字符串} 字符串
算法名字来源:发明人 Knuth(D.E.Knuth)&Morris(J.H.Morris)&Pratt(V.R.Pratt) \texttt{Knuth(D.E.Knuth)\&Morris(J.H.Morris)\&Pratt(V.R.Pratt)} Knuth(D.E.Knuth)&Morris(J.H.Morris)&Pratt(V.R.Pratt)

讲解:

比如要在文本字符串 a = ababaababaabab a=\texttt{ababaababaabab} a=ababaababaabab 中找模式字符串 b = abaabab b=\texttt{abaabab} b=abaabab,暴力的做法就是枚举 a [ i ] = = b [ 1 ] a[i]==b[1] a[i]==b[1],然后对 a [ i ∼ i + l e n ( b ) − 1 ] a[i\sim i+len(b)-1] a[ii+len(b)1] b [ 1 ∼ l e n ( b ) ] b[1\sim len(b)] b[1len(b)] 进行匹配,代码:

#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int n,m,ans;
char a[N],b[N];
int main(){
   
	scanf("%s%s",a+1,b+1);
	n=strlen(a+1),m=strlen(b+1);
	for(int i=1;i<=n-m+1;i++)
		if(a[i]==b[1]){
   
			bool ok=1;
			for(int j=2;j<=m;j++)
				if(a[i+j-1]!=b[j]){
   ok=0;break;} //#
			if(ok) ans++;
		}
	printf("%d\n",ans);
	return 0;
}

时间复杂度为 Θ ( n × m ) \Theta(n\times m) Θ(n×m),爆率百分百。而 Θ ( n + m ) \Theta(n+m) Θ(n+m) 的KMP的精华就在于,每次上面代码标记的那行失配(匹配失败, a [ i + j − 1 ] ! = b [ j ] a[i+j-1]!=b[j] a[i+j1]!=b[j])以后,不需要让模式串 b b b 从头开始匹配,而是跳到一个固定的位置,开始匹配

如下,灰色表示待匹配,绿色表示正在匹配(成功),红色表示正在匹配(失败),黑色表示已经匹配:

ababaababaabab \color{gray}\texttt{ababaababaabab} ababaababaabab
abaabab \color{gray}\texttt{abaabab} abaabab

a babaababaabab \color{#60c000}\texttt{a}\color{gray}\texttt{babaababaabab} ababaababaabab
a baabab \color{#60c000}\texttt{a}\color{gray}\texttt{baabab} abaabab

a b abaababaabab \color{black}\texttt{a}\color{#60c000}\texttt{b}\color{gray}\texttt{abaababaabab} ababaababaabab
a b aabab \color{black}\texttt{a}\color{#60c000}\texttt{b}\color{gray}\texttt{aabab} abaabab

ab a baababaabab \color{black}\texttt{ab}\color{#60c000}\texttt{a}\color{gray}\texttt{baababaabab}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值