🚦 差分隐私在运营指标:ABP 的 DP 计数器与噪声预算
📚 目录
0. TL;DR 🚀
- 👤 隐私单元(Privacy Unit)选择 用户/设备级,写路径先按隐私单元聚合并剪裁贡献上界 K。
- ➕ 计数/求和 → Laplace(尺度
b = Δ/ε);📈 比例/均值 → Gaussian(生产建议解析高斯校准 σ;示例以经典上界为保守缺省)。 - 🧩 后处理不降隐私:结果可做非负截断、舍入、分桶、平滑等业务约束。
- 📒 预算账本:按“租户×指标×窗口开始时刻(UTC)”累计 ε/δ;Key 与窗口严格对齐;Lua 原子消费;TTL=窗口剩余秒数;超额硬阻断。
- 🔒 发布幂等:周期任务在每个窗口结束时发布上一窗(UTC);用 Redis SET NX 建立
released锁,保证只发布一次(并可 Upsert 落库)。 - 🧪 灰度与 A/B:按租户/功能开关;以 MAPE / P95 误差阈值放量;随时回滚。
📈 一图看懂(写入→发布→预算→加噪)
1. 背景与边界 🧭
- 🔐 与加密/RLS:加密/RLS 决定“谁能看真值”;差分隐私(DP)约束“公开后能泄露多少”。
- ✅ 适用:DAU/留存、功能调用次数、错误率、漏斗流量等群体指标;⛔ 不用于强一致计费或逐个体对账。
- ⚠️ 风险与对策:合谋/跨窗差分/滑动窗反推 → 隐私预算、最小样本门槛、发布限频、审计追溯。
2. DP 工程口径 📐
-
📏 敏感度 Δ:单个隐私单元在单窗口的最大贡献(经 K 剪裁后)。
-
🔊 Laplace:
b = Δ/ε;❄️ Gaussian:σ = f(ε, δ, Δ)(生产建议“解析高斯”或接入 OpenDP 校准;示例用经典上界)。 -
🧮 组合/会计:
- 拉普拉斯:ε 线性加和(基础组合)。
- 高斯:用 RDP 按 α 网格累加,再对给定 δ 反推
ε*(δ) = min_α {RDP(α) + ln(1/δ)/(α-1)},展示“已用/剩余”。
-
🧯 后处理不伤隐私:非负截断、舍入、分桶、平滑等结果级操作不降低 DP 保证。
3. 目标架构(ABP 集成)🏗️
Abp.DpMetrics 模块(应用层)
IDpCounter.Increment(tenant, metric, unitId, amount=1):写路径,按隐私单元聚合→剪裁 K→入库。DpPublishWorker:周期发布;按窗口结束发布上一窗(UTC);发布幂等锁→预算校验→加噪→后处理→审计落表。IPrivacyAccountant(Redis/DB 实现):存(tenant, metric, windowStartUtc)的 ε/δ 用量与上限;提供Lua 原子 TryConsume。IBudgetPolicyProvider:预算上限(ε/δ cap)配置化,支持按租户/指标/窗口粒度下

最低0.47元/天 解锁文章
2967

被折叠的 条评论
为什么被折叠?



