prim 算法

最小生成树是数据结构中图的一种重要应用,它的要求是从一个带权无向完全图中选择n-1条边并使这个图仍然连通(也即得到了一棵生成树),同时还要考虑使树的权最小。
  为了得到最小生成树,人们设计了很多算法,最著名的有prim算法和kruskal算法。教材中介绍了prim算法,但是讲得不够详细,理解起来比较困难,为了帮助大家更好的理解这一算法,本文对书中的内容作了进一步的细化,希望能对大家有所帮助。
  假设V是图中顶点的集合,E是图中边的集合,TE为最小生成树中的边的集合,则prim算法通过以下步骤可以得到最小生成树:
  1:初始化:U={u 0},TE={}。此步骤设立一个只有结点u 0的结点集U和一个空的边集TE作为最小生成树的初始行态,在随后的算法执行中,这个行态会不断的发生变化,直到得到最小生成树为止。
  2:在所有u∈U,v∈V-U的边(u,v)∈E中,找一条权最小的边(u 0,v 0),将此边加进集合TE中,并将此边的非U中顶点加入U中。此步骤的功能是在边集E中找一条边,要求这条边满足以下条件:首先边的两个顶点要分别在顶点集合U和V-U中,其次边的权要最小。找到这条边以后,把这条边放到边集TE中,并把这条边上不在U中的那个顶点加入到U中。这一步骤在算法中应执行多次,每执行一次,集合TE和U都将发生变化,分别增加一条边和一个顶点,因此,TE和U是两个动态的集合,这一点在理解算法时要密切注意。
  3:如果U=V,则算法结束;否则重复步骤2。可以把本步骤看成循环终止条件。我们可以算出当U=V时,步骤2共执行了n-1次(设n为图中顶点的数目),TE中也增加了n-1条边,这n-1条边就是需要求出的最小生成树的边。
  了解了prim算法的基本思想以后,下面我们就可以看看具体的算法。
  为了和教材保持一致,我们仍然规定:连通网用邻接矩阵net表示,若两个顶点之间不存在边,其权值为计算机内允许最大值,否则为对应边上的权值。
   首先定义数据类型:
  
type adjmatrix=array [1..n,1..n] of real;
  //定义一个n*n的矩阵类型adjmatrix,以便存储邻接矩阵//
  
edge=record
     beg,en:1..n;
     length:real;
     end;

  //定义边的存储结构为edge,其中beg是边的起点, en 是边的终点,length是边的权值//
  
treetype=array [1..n-1] of edg e;
  //定义一个基类型为edge的数组类型  treetype,其元素个数为n-1个//
 
var net:adjmatrix;
  //定义一个adjmatrix类型的变量net,图的邻接矩阵就存放在net中//
  
tree:treetype;
  //定义一个treetype类型的变量tree,tree中可以存放n-1条边的信息,包括起点、终点及权值。在算法结束后,最小生成树的n-1 条边就存放在tree中//
  算法如下(设n为构造的出发点):
 
procedure prim(net:adjmatrix;var tree:treetype);
  //过程首部.参数的含义是:值参数net传递图的邻接矩阵,变参tree指明最小生成树的存放地址//
  
begin
 for v:=1 to n-1 do

  //此循环将顶点n与图中其它n-1个顶点形成的n-1条边存放在变量tree中//
  
[tree[v].beg:=n;
  tree[v].en:=v;
  tree[v].length:=net[v]]
  for k:=1 to n-1 do

  //此循环执行算法思想中的步骤2,循环体每执行一次,TE中将增加一条边,在算法中,这条增加的边存放在变量tree中的第k个元素上,可以这样认为,tree中从第1到第k号元素中存放了TE和U的信息。注意:在算法思想中我们特别提醒了TE和U的动态性,表现在算法中,这种动态性 体现在循环变量k的变化上。//
  
[min:=tree[k].length;
  for j:=k to n-1 do
   if tree[j].length<min then
     [min:=tree[j].length;
     m:=j;]

   //上面两条语句用于搜索权值最小的边//
  v:=tree[m].en;
  //此语句记录刚加入TE中的边的终点,也即即将加入U中的顶点//
  
edge:=tree[m];
  tree[m]:=tree[k];
  tree[k]:=edge;

  //上面三句用于将刚找到的边存储到变量tree的第k号元素上//
  
for j:=k+1 to n-1 do
  //此循环用于更新tree中第k+1到第n-1号元素。更新以后这些元素中的en子项是各不相同的,它们的全部就是集合V-U;beg子项则可以相同,但它们需满足两个条件:一是应属于集合U;另一是beg子项和en子项行成的边,在所有与顶点en联系的边中权值应最小。//
  
[d:=net[v.tree[j].en];
   if d<tree[j].length
    then [tree[j].length:=d;
       tree[j].beg:=v;]
   ]
  ]
  for j:=1 to n-1 do

  //此循环用于输出最小生成树//
  
writeln(tree[j].beg,tree[j].en,tree[j].length);
  end;

  此算法的精妙之处在于对求权值最小的边这一问题的分解(也正是由于这种分解,而导致了算法理解上的困难)。按照常规的思路,这一问题应该这样解决:分别从集合V-U和U中取一顶点,从邻接矩阵中找到这两个顶点行成的边的权值,设V-U中有m个顶点,U中有n个顶点,则需要找到m*n个权值,在这m*n个权值中,再查找权最小的边。循环每执行一次,这一过程都应重复一次,相对来说计算量比较大。而本算法则利用了变量tree中第k+1到第n-1号元素来存放到上一循环为止的一些比较结果,如以第k+1号元素为例,其存放的是集合U中某一顶点到顶点tree.en的边,这条边是到该点的所有边中权值最小的边,所以,求权最小的边这一问题,通过比较第k+1号到第n-1号元素的权的大小就可以解决,每次循环只用比较n-k-2次即可,从而大大减小了计算量。
  
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值