Spark大数据处理学习笔记(3.3)掌握RDD分区

该文章主要为完成实训任务,详细实现过程及结果见【http://t.csdn.cn/OmCQ8



一、概念

  • 在Spark中,RDD(弹性分布式数据集)是一种基本的数据结构,可以在集群上并行处理数据。RDD的分区(Partition)是数据的逻辑划分单元,它决定了数据在集群中的分布和并行处理的方式。掌握RDD分区的设计和调整对于优化Spark应用程序的性能至关重要。以下是关于RDD分区的一些重要概念和建议:

  • 分区类型:Spark提供了多种分区类型,如Hash分区、Range分区和自定义分区等。Hash分区是最常用的分区策略,它根据键的哈希值将数据均匀分配到不同的分区中。Range分区按照键的范围将数据排序分区,适用于范围查询和排序操作。自定义分区允许开发人员根据自己的需求定义特定的分区策略。

  • 分区数目:RDD的分区数目是决定并行处理程度的重要因素。合理设置分区数目可以充分利用集群资源,提高计算性能。分区数目应该与集群的核心数目和可用内存相匹配,通常建议设置为集群核心数目的两倍或更多。

  • 分区操作:在进行RDD的转换操作时,分区数目可能会发生变化。一些操作(如map、filter和flatMap等)保持原有分区数目不变,而一些操作(如reduceByKey和groupByKey等)会进行重新分区。在转换操作中,需要注意操作的影响,避免出现数据倾斜或不均匀的情况。

  • 分区调整:在某些情况下,可能需要手动调整RDD的分区,以优化数据的分布和并行计算。可以使用repartition和coalesce等操作来重新分区。repartition操作会进行全量的数据洗牌,适用于需要完全重新分区的情况。而coalesce操作只会合并部分分区,适用于减少分区数目而不进行完全洗牌的情况。

  • 数据倾斜处理:在处理大规模数据时,可能会出现数据倾斜(Data Skew)的情况,即某些分区的数据量远大于其他分区。数据倾斜会导致计算不均衡和性能下降。对于数据倾斜的RDD,可以考虑采取一些特殊的处理策略,如使用repartition操作进行重新分区、使用reduceByKey替换groupByKey等。

  • 总的来说,掌握RDD分区的设计和调整是优化Spark应用程序性能的关键。通过合理设置分区数目、选择适当的分区策略、注意分区操作和处理数据倾斜等技巧,可以充分发挥Spark的并行计算能力,提高应用程序的效率和可扩展性。

二、自定义分区器

2.1 提出问题

  • 例如,某学生有以下3科三个月的月考成绩数据。
    在这里插入图片描述
  • 现需要将每一科成绩单独分配到一个分区中,然后将3科成绩输出到HDFS的指定目录(每个分区对应一个结果文件),此时就需要对数据进行自定义分区。

2.2 解决问题

1. 准备数据文件

  • master虚拟机的/home目录里创建marks.txt
    在这里插入图片描述
  • 将数据文件上传到HDFS指定目录
    在这里插入图片描述

2. 新建科目分区器

  • 创建cn.kox.rdd.day04包,在包里创建SubjectPartitioner
    在这里插入图片描述
package cn.kox.rdd.day04

import org.apache.spark.Partitioner
/**
 * @ClassName: SubjectPartitioner
 * @Author: Kox
 * @Data: 2023/6/15
 * @Sketch:
 */
class SubjectPartitioner(partitions: Int) extends Partitioner {
   
  /**
   * @return 分区数量
   */
  override def numPartitions: Int = partitions

  /**
   * @param key(科目)
   * @return 分区索引
   */
  override def getPartition(key: Any
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值