【机器学习】主成分分析(Principal Component Analysis,PCA)_吴恩达ML

声明:本文基于在校课程及吴恩达ML教程,代码参考自多份博客(已在参考链接中表明),如需转载请标明出处。

源代码、实验数据、实验指导书: https://pan.baidu.com/s/1yTTI0_w2bZ7o8uuxravLyA 提取码: spbp

一、算法描述

PCA 是最常见的降维算法。

比如说,现在想把 2 2 2 维 降到 1 1 1 维。PCA 的做法是找到一个方向向量(Vector direction),当把所有的数据都投射到该向量上时,投射均方误差能尽可能地小。方向向量是一个经过原点的向量,而投射误差是从特征向量向该方向向量作垂线的长度。
在这里插入图片描述
现在将问题一般化,即将 n 维数据降至 k 维,对于 PCA 来说就是找到高维向量 U = ( u 1 , u 2 , . . . , u k ) U = (u^1, u^2, ... , u^k) U=(u1,u2,...,uk) 使得总的投射误差最小。

二、算法流程

I. 降维

  1. 标准化。计算出所有特征的均值,然后令 x j = x j − μ j x_j = x_j - \mu_j xj=xjμj。如果特征是在不同的数量级上,还需要将其除以标准差, x j ∗ = ( x j − μ j ) / σ j x_j^* = (x_j - μ_j ) / σ_j xj=(xjμj)/σj

z-score 标准化(zero-mean normalization),也叫标准差标准化。这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为 0 0 0,标准差为 1 1 1。注意,一般来说 z-score 不是归一化,而是标准化,归一化只是标准化的一种。from 数据标准化/归一化normalization

f o r   e a c h   c o l u m n , ( X − m e a n ) / s t d for \ each \ column, (X - mean) / std for each column,(Xmean)/std

其中 mean 为所有样本数据的均值,std 为所有样本数据的标准差。

  1. 计算协方差矩阵(covariance matrix)
    c o v _ m a t = 1 m ∑ i = 1 m x ( i ) ( x ( i ) ) T = 1 m X X T cov\_mat = \frac{1}{m}\sum_{i=1}^{m}x^{(i)}(x^{(i)})^T = \frac{1}{m}XX^T cov_mat=m1i=1mx(i)(x(i))T=m1XXT

x ( i ) x^{(i)} x(i) 代表第 i i i 个样本,是一个 n ∗ 1 n *1 n1 的向量, n n n 是特征维数, m m m 是样本个数。

  1. 计算协方差矩阵的特征向量(eigenvectors)。使用奇异值分解(singular value decomposition,SVD)来求解协方差矩阵的特征向量。
    c o v _ m a t = U S V T U = [ u 1 , u 2 , . . . , u n ] cov\_mat = USV^T \\ U = [u_1, u_2, ... , u_n] cov_mat=USVTU=[u1,u2,...,un]

U U U n ∗ n n*n nn 维的主成分(Principal Component)集

  1. 降维。将数据从 n n n 维降至 k k k 维,只需要从 U U U 中选取前 k k k 个向量,获得一个 n ∗ k n*k nk 维度的矩阵。
    U r e d u c e = [ u 1 , u 2 , . . . , u k ] U_{reduce} = [u_1, u_2, ... , u_k] Ureduce=[u1,u2,...,uk]
    然后通过如下计算即可获得要求的新特征向量 Z Z Z
    z ( i ) = U r e d u c e T x ( i ) Z = X U r e d u c e z^{(i)} = U_{reduce}^Tx^{(i)} \\ Z = XU_{reduce} z(i)=UreduceTx(i)Z=XUreduce
  • U r e d u c e U_{reduce} Ureduce n ∗ k n*k nk 维的前 k k k 个主成分
  • U r e d u c e T U_{reduce}^T UreduceT 是前 k k k 个主成分的转置( k ∗ n k*n kn 维), x ( i ) x^{(i)} x(i) n ∗ 1 n*1 n1 维的均值归一化后第 i i i 个样本数据,因此结果 z ( i ) z^{(i)} z(i) k ∗ 1 k*1 k1 维的投影向量
  • 整体使用矩阵计算即 m ∗ n m*n mn 维的 X X X 【矩阵乘】 n ∗ k n*k nk 维的 U r e d u c e U_{reduce} Ureduce 即可。 Z = X U r e d u c e Z = XU_{reduce} Z=XUreduce

II. 数据恢复

若想使用压缩后的数据近似的获得原有的特征,可以使用如下公式:
因为:
z ( i ) = U r e d u c e T x ( i ) z^{(i)} = U_{reduce}^Tx^{(i)} z(i)=UreduceTx(i)
所以相反的方程:
x a p p r o x ( i ) = U r e d u c e z ( i ) x a p p r o x ( i ) ≈ x ( i ) X a p p r o x = Z U r e d u c e T x^{(i)}_{approx} = U_{reduce}z^{(i)} \\ x^{(i)}_{approx} \approx x^{(i)} \\ X_{approx} = Z U_{reduce}^T xapprox(i)=Ureducez(i)xapprox(i)x(i)Xapprox=ZUreduceT

  • U r e d u c e U_{reduce} Ureduce n ∗ k n*k nk 维, z ( i ) z^{(i)} z(i) k ∗ 1 k*1 k1 维,可得 n ∗ 1 n*1 n1 维的 x a p p r o x ( i ) x^{(i)}_{approx} xapprox(i)
  • 整体使用矩阵计算, Z Z Z m ∗ k m*k mk 维, U r e d u c e T U_{reduce}^T UreduceT k ∗ n k*n kn 维,可得 m ∗ n m*n mn 维的 X a p p r o x X_{approx} Xapprox
压缩表示下的重构——数据恢复

在这里插入图片描述
x a p p r o x ( i ) = U r e d u c e z ( i ) x a p p r o x ( i ) ≈ x ( i ) x^{(i)}_{approx} = U_{reduce}z^{(i)} \\ x^{(i)}_{approx} \approx x^{(i)} xapprox(i)=Ureducez(i)xapprox(i)x(i)
如图所知,这是一个漂亮的重构,它们与原始数据相当相似。上图直观的展现了从低维表示 Z Z Z 回到未压缩的表示。

三、PCA 算法 python 实现

import numpy as np

class PCA():

    def normalize(self, X):
        """
        1. 均值归一化
            1. 计算出每一维特征的均值𝜇_𝑗  ,令 𝑥_𝑗=𝑥_𝑗−𝜇_𝑗。
            2. 如果特征是在不同的数量级上,还需要将其除以标准差 。
        for each column, (X - mean) / std
        """
        means = X.mean(axis=0)
        stds = X.std(axis=0, ddof=1) # numpy.std() 求标准差的时候默认是除以 n 的,即是有偏的,np.std无偏样本标准差方式为加入参数 ddof = 1;
        X_norm = (X - means) / stds
        return X_norm

    def covariance_matrix(self, X_norm):
        """
        2. 计算协方差矩阵(covariance matrix)𝛴
            ∑=1/𝑚 ∑1_(𝑖=1)^m▒〖(𝑥^((𝑖)) ) (𝑥^((𝑖)) )^𝑇 〗= 1/𝑚 𝑋𝑋^𝑇
            ∑ = 1/𝑚〖𝑋^𝑇 𝑋〗
        """
        m = X_norm.shape[0]
        return (X_norm.T @ X_norm) / m

    def dimensional_reduction(self, X, keep_dims=None):
        if not keep_dims:
            keep_dims = X.shape[1] - 1
        # 1. 均值、归一化
        normalize_x = self.normalize(X)
        # 2. 计算协方差矩阵
        cov_x = self.covariance_matrix(normalize_x)
        # 3. 计算协方差矩阵𝜮的特征向量, 使用奇异值分解(SVD分解)
        U, S, V = np.linalg.svd(cov_x)  # U: principle components (n, n)
        # 4. 将数据从𝑛维降至𝑘维,从𝑈中选取前𝑘个向量
        U_reduce = U[:, :keep_dims] # U_reduce.shape : (n, k)
        # 5. 将二维数据投影到主成分方向(二维数据降维到一维)得到降维的结果
        Z = normalize_x @ U_reduce # Z.shape : (m, k)
        return normalize_x, U_reduce, Z

    def recover(self, Z, U_reduce):
        """
        6. 数据恢复:将降维后一维数据再投影回二维空间。
            𝒙_𝒂𝒑𝒑𝒓𝒐𝒙^((𝒊) )=𝑼_𝒓𝒆𝒅𝒖𝒄𝒆 𝒛^((𝒊))
        """
        return Z @ U_reduce.T

四、吴恩达-机器学习 PCA 作业实践

  1. e x 7 d a t a 1. m a t ex7data1.mat ex7data1.mat 中的数据进行降维(原始数据是 2 2 2 维数据,降成 1 1 1 维)。
  2. 利用 PCA 对人脸进行降维。人脸数据集 e x 7 f a c e s . m a t ex7faces.mat ex7faces.mat 原始的人脸大小 32 × 32 = 1024 32×32=1024 32×32=1024 维,一行数据是一个人脸,将数据 r e s h a p e reshape reshape 32 × 32 32×32 32×32,就可以显示人脸图像。利用 PCA 算法将 1024 1024 1024 维的人脸降维到 100 100 100 维。

assignment_1

import scipy.io as scio
import numpy as np
import matplotlib.pyplot as plt
from PCA import PCA

# 读取图片数据
data = scio.loadmat('ex7data1.mat')
X = data['X'] # X.shape : (50, 2)

if __name__ == '__main__':
    plt.figure(0, (7, 7))
    plt.title("raw data")
    plt.xlim(xmin=0, xmax=7)
    plt.ylim(ymin=2, ymax=8)
    plt.scatter(X[:, 0], X[:, 1], c='', marker='o', facecolors='none', edgecolors='b')

    pca = PCA()
    X_norm, U_reduce, Z = pca.dimensional_reduction(X)
    print("U_reduce : ", U_reduce)
    print("Z[0] : ", Z[0])
    X_approx = pca.recover(Z, U_reduce)
    print("X_approx[0] : ", X_approx[0])

    plt.figure(1, (7, 7))
    plt.scatter(X_norm[:, 0], X_norm[:, 1], c='', marker='o', facecolors='none', edgecolors='b')
    plt.scatter(X_approx[:, 0], X_approx[:, 1], c='', marker='o', facecolors='none', edgecolors='r')
    for i in range(X.shape[0]):
        x = [X_norm[i, 0], X_approx[i, 0]]
        y = [X_norm[i, 1], X_approx[i, 1]]
        plt.plot(x, y, '--k', linewidth=1)
    plt.title("PCA dimensional reduction and recover")
    plt.xlim(xmin=-4, xmax=3)
    plt.ylim(ymin=-4, ymax=3)

    plt.show()
  • ex7data1.mat原始数据图
    在这里插入图片描述

计算出的第一主成分:U_reduce : [[-0.70710678] [-0.70710678]]
第一个样本的投影值:Z[0] : [1.48127391]
第一个样本投影回二维数据空间位置:X_approx[0] : [-1.04741883 -1.04741883]

  • 在二维空间里面画出原始样本点(均值归一化后的)和数据恢复后的样本点。用蓝色代表原始点,红色代表回复后的数据点,图如下:
    在这里插入图片描述

assignment_2

import scipy.io as scio
import numpy as np
import matplotlib.pyplot as plt
from PCA import PCA
from displayData import display_data


# 读取图片数据
data = scio.loadmat('ex7faces.mat')
X = data['X'] # X.shape : (5000, 1024)

if __name__ == '__main__':
    # 前100个人脸
    display_data(X, "Original faces")

    pca = PCA()
    X_norm, U_reduce, Z = pca.dimensional_reduction(X, 100)
    # 前100维主成分(转换成人脸形式)
    display_data(U_reduce.T, "Principle Components", 6, 6)

    X_approx = pca.recover(Z, U_reduce)
    # 100个人脸仅使用前100个主成分表示再恢复得到的人脸
    display_data(X_approx, "Recovered faces")

展示人脸数据的函数(displayData.py)

# displayData.py
import matplotlib.pyplot as plt
import numpy as np

# 函数说明:把输入的图像数据X进行重新排列,显示在一个面板figurePane中,
# 面板中有多个小imge用来显示每一行数据

def display_data(x, title = "show top 100", rows = 10, cols = 10):
	(m,n) = x.shape

	# 设置每个小图例的宽度和高度
	width = np.round(np.sqrt(n)).astype(int)
	height = (n / width).astype(int)
	print("width : ", width, " height : ", height)

	# 设置图片的行数和列数
	# rows = 10 # np.floor(np.sqrt(m)).astype(int)
	# cols = 10 # np.ceil(m / rows).astype(int)
	print("rows : ", rows, " cols : ", cols)
	# 设置图例之间的间隔
	pad = 1

	# 初始化图像数据
	display_array = -np.ones((pad + rows*(height+pad),
							  pad + cols*(width + pad)))
	print(display_array.shape)

	# 把数据按行和列复制进图像中
	# current_image = np.random.randint(0, m)
	current_image = 0
	for j in range(rows):
		for i in range(cols):
			if current_image >= m:
				break
			# [:,np.newaxis]可以让指定的那一列数据以列的形式返回和指定
			# 否则返回的是行的形式
			max_val = np.max(np.abs(x[current_image,:]))
			display_array[pad + j*(height + pad) + np.arange(height),
						  pad + i*(width + pad) + np.arange(width)[:,np.newaxis]] = \
						  x[current_image,:].reshape((height,width)) / max_val
			# current_image = np.random.randint(0, m)
			current_image += 1
		if current_image >= m :
			break

	# 显示图像
	plt.figure(figsize=(8, 8))
	# 设置图像色彩为灰度值,指定图像坐标范围
	plt.imshow(display_array,cmap = 'gray',extent =[-1,1,-1,1])
	plt.axis('off')
	plt.title(title, fontsize=20)
	plt.show()
  • 人脸数据集 ex7faces.mat 中前 100 100 100 张人脸图
    在这里插入图片描述
  • 使用 PCA 降维,将降维得到的 100 100 100 个主成分转换成人脸形式——Eigenfaces(特征脸/本征脸)
    在这里插入图片描述
  • 使用前 100 100 100 个主成分表示再恢复得到的人脸图
    在这里插入图片描述
  • 原始人脸图像与使用前 100 100 100 个主成分重构的人脸图像并排对比
    在这里插入图片描述

五、参考链接

  1. 吴恩达机器学习笔记-5
  2. 吴恩达机器学习作业Python实现(七):K-means和PCA主成分分析
  3. 机器学习 吴恩达 课后习题百度云资源 (Coursera 搬运)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值