快速选择算法(Quickselect),用于在未排序数组中快速找到第k小/大的元素,平均时间复杂度为O(n)
算法核心思想
- 基于快速排序分区:通过一趟分区将数组分为两部分,左侧≤基准值,右侧≥基准值。
- 递归选择区间:根据分区后基准值的位置与k的关系,仅递归处理目标区间。
public class QuickSelect {
public static int findKthSmallest(int[] nums, int k) {
if (nums == null || k <= 0 || k > nums.length)
throw new IllegalArgumentException("Invalid input");
return quickSelect(nums, 0, nums.length - 1, k - 1); // 转换为0-based索引
}
private static int quickSelect(int[] nums, int left, int right, int k) {
if (left == right) return nums[left]; // 终止条件
int pivotIndex = partition(nums, left, right);
if (k == pivotIndex) {
return nums[k];
} else if (k < pivotIndex) {
return quickSelect(nums, left, pivotIndex - 1, k); // 递归左半部分
} else {
return quickSelect(nums, pivotIndex + 1, right, k); // 递归右半部分
}
}
private static int partition(int[] nums, int left, int right) {
int pivot = nums[right]; // 选择最右元素为基准
int i = left;
for (int j = left; j < right; j++) {
if (nums[j] <= pivot) {
swap(nums, i, j);
i++;
}
}
swap(nums, i, right); // 将基准放到正确位置
return i;
}
private static void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
public static void main(String[] args) {
int[] nums = {3, 2, 1, 5, 6, 4};
int k = 2; // 找第2小的元素
System.out.println("第" + k + "小的元素是: " + findKthSmallest(nums, k));
}
}
代码说明:通过分区和递归缩小范围,快速定位第k小元素,避免完全排序
关键点解析
- 分区逻辑:
partition
方法将数组分为两部分,返回基准值的最终位置。 - 递归终止:当
k
等于基准位置时直接返回结果,否则递归处理左/右子数组。 - 时间复杂度:平均O(n),最坏O(n²)(可通过随机化基准值优化)
- 输入校验:检查
k
是否在有效范围内(1 ≤ k ≤ nums.length) - 重复元素:算法天然支持重复值场景
快速排序算法,采用经典的分治思想,平均时间复杂度为O(n log n)
核心原理
- 分区(Partition):选取基准值(pivot),将数组分为左(≤pivot)和右(≥pivot)两部分。
- 递归排序:对左右子数组递归执行相同操作,直到子数组长度为1
public class QuickSort {
public static void quickSort(int[] arr) {
if (arr == null || arr.length <= 1) return;
sort(arr, 0, arr.length - 1);
}
private static void sort(int[] arr, int left, int right) {
if (left >= right) return;
int pivotIndex = partition(arr, left, right);
sort(arr, left, pivotIndex - 1); // 递归排序左半部分
sort(arr, pivotIndex + 1, right); // 递归排序右半部分
}
private static int partition(int[] arr, int left, int right) {
int pivot = arr[right]; // 选择最右元素为基准
int i = left;
for (int j = left; j < right; j++) {
if (arr[j] < pivot) {
swap(arr, i, j);
i++;
}
}
swap(arr, i, right); // 将基准放到正确位置
return i;
}
private static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
public static void main(String[] args) {
int[] arr = {6, 3, 8, 2, 9, 1};
quickSort(arr);
System.out.println(Arrays.toString(arr)); // 输出排序结果-从小到大
}
}
代码说明:通过分区和递归实现原地排序,空间复杂度O(log n)来自递归栈
关键点解析
- 基准选择:示例使用最右元素,实际可优化为三数取中或随机选择24。
- 稳定性:快速排序是不稳定排序(相同元素可能交换位置)。
- 优化场景:小数组可切换为插入排序(如长度≤15)。
- 最坏情况:当数组已有序时退化为O(n²),需通过随机化基准避免。
- 大数据优势:相比归并排序,快速排序的常量因子更小,实际更快
- 此实现适用于通用排序场景,是Java标准库
Arrays.sort()
对基本类型的底层实现之一