Anaconda3(2022.10&python3.9)+Pytorch(cpu版)安装教程

目录

1. Anaconda安装教程

1.1 下载安装

1.2 安装流程——windows 64 示例

1.3 环境配置

1.4 国内镜像源配置

2. Pytorch安装教程(cpu版)

2.1 查看显卡是否支持cuda

2.2 安装torch(cpu版)


1. Anaconda安装教程

1.1 下载安装

方法一:Anaconda官网地址 Anaconda | Anaconda Distribution ,进去后直接下拉至最底部,根据实际需要选择与自己电脑系统相匹配的版本。这里下载的版本如图所示:

 方法二:清华镜像源Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror,进去后根据自己的需要选择对应的版本下载:

1.2 安装流程——windows 64 示例

用户选择

确认安装路径,此处建议安在C盘,也可安装在其他盘,不影响使用。

 

 最后可以在开始菜单里看到已安装列表如下

 1.3 环境配置

 点击系统属性 -> 高级系统设置 -> 环境变量

 

 在下方找到系统变量 -> Path,然后点击 编辑 或 直接双击

 添加安装目录及相应bin目录进去,如下图,完成配置

 

之后可以简单通过win+R输入cmd进入命令行,输入 conda --version 命令或者 python 命令检查下安装配置是否成功: 

 1.4 国内镜像源配置

通过win+R输入cmd进入命令行,通过输入下面命令配置为清华源:

conda config --add channels    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels    https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/

附:conda常用命令 Command reference — conda 22.9.0.post73+b10fcfdd4 documentation

  • conda --version #查看conda版本,验证是否安装

  • conda update conda #更新至最新版本,也会更新其它相关包

  • conda update --all #更新所有包

  • conda update package_name #更新指定的包

  • conda create -n env_name package_name #创建名为env_name的新环境,并在该环境下安装名为package_name 的包,可以指定新环境的版本号,例如:conda create -n python2 python=python2.7 numpy pandas,创建了python2环境,python版本为2.7,同时还安装了numpy pandas包

  • source activate env_name #切换至env_name环境

  • source deactivate #退出环境

  • conda info -e #显示所有已经创建的环境

  • conda create --name new_env_name --clone old_env_name #复制old_env_name为new_env_name

  • conda remove --name env_name –all #删除环境

  • conda list #查看所有已经安装的包

  • conda install package_name #在当前环境中安装包

  • conda install --name env_name package_name #在指定环境中安装包

  • conda remove – name env_name package #删除指定环境中的包

  • conda remove package #删除当前环境中的包

2. Pytorch安装教程(cpu版)

2.1 查看显卡是否支持cuda

任务栏右键选择任务管理器,打开后点击性能 -> GPU 查看自己显卡的型号,再去Inviada官网查询看是否支持cuda

 2.2 安装torch(cpu版)

创建一个新的环境来安装pytorch,打开anaconda prompt,输入以下指令: 

conda create -n pytorch python=3.9

中间会提问是否安装一些新的包,输入 y 后回车,等待一会即可,创建成功则如图所示

 激活pytorch环境

conda activate pytorch

激活后如图所示

 进入torch官网选择对应的cuda版本,这里选择 cpu 版本,复制红框内代码返回至刚刚的Anaconda Prompt中,回车运行,同样会提示有一些包需要安装,输入y,回车安装即可。

 安装之后可以输入如下指令来检验pytorch是否安装成功

pip list

安装成功则截图如下

<think>好的,用户的问题是关于如何通过Anaconda安装Python 3.9。我需要先确认Anaconda是否支持Python 3.9安装。根据引用[3]中的信息,用户的环境是Anaconda-3.2-2022.10,并且已经成功安装Python 3.9,这说明Anaconda是支持该版本的。 首先,用户可能已经安装Anaconda,但需要创建特定Python版本的环境。通常,Anaconda允许用户创建独立的环境来管理不同版本Python和库。常见的做法是使用conda create命令指定Python版本。 接下来,我需要回忆conda命令的正确语法。正确的命令应该是`conda create -n 环境名 python=3.9`,这会创建一个新环境并安装指定版本Python。用户可能需要确认可用的Python 3.9版本是否存在,可以通过`conda search python`查看。不过,有时候直接指定版本号即可,conda会自动处理依赖。 另外,用户可能遇到环境创建后Python版本未正确安装的情况。这时候需要检查conda的渠道和更新情况,确保conda本身是最新的,或者添加必要的渠道,比如引用[2]中提到的特定渠道。不过通常情况下,默认渠道已经包含Python 3.9的包。 安装完成后,激活环境是必要的步骤,使用`conda activate 环境名`。用户可能会忘记激活环境,导致安装Python版本不是预期的。此外,安装后验证Python版本也是关键,使用`python --version`确认是否正确。 引用[1]中提到用户最初以为Python 3.9不支持Jupyter,但实际上是支持的。这可能意味着在创建环境后,用户需要在新环境中安装Jupyter或其他必要库。虽然问题主要关于安装Python,但补充说明安装Jupyter可能会有帮助。 最后,用户可能需要了解如何管理多个Python环境,避免版本冲突。确保步骤清晰,从创建环境到激活,再到验证,每个环节都详细说明,避免遗漏关键步骤。</think>### 如何通过Anaconda安装Python 3.9? #### 步骤说明 1. **确认Anaconda安装** 确保已从[Anaconda官网](https://www.anaconda.com/)下载并安装最新版本安装完成后,打开终端(Windows为Anaconda Prompt或CMD,macOS/Linux为终端)。 2. **创建Python 3.9的独立环境** 运行以下命令创建一个名为`py39`(可自定义)的环境,并指定Python版本3.9: ```bash conda create -n py39 python=3.9 ``` 若提示安装依赖包,输入`y`确认[^3]。 3. **激活新环境** ```bash conda activate py39 ``` 4. **验证Python版本** ```bash python --version ``` 输出应为`Python 3.9.x`。 5. **安装额外库(可选)** 例如安装JupyterLab: ```bash conda install jupyterlab ``` 此步骤仅在需要特定工具时执行[^3]。 --- #### 注意事项 - **渠道问题**:若默认渠道缺少Python 3.9包,可尝试添加其他渠道,例如: ```bash conda config --add channels conda-forge ``` 参考[引用2]中的渠道添加方法[^2]。 - **环境管理**:通过`conda env list`查看所有环境,`conda deactivate`退出当前环境。 ---
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值