题目传送门:http://tyvj.cn/p/4875
题目分析:真是一道神题,我考试的时候想了1h都没想出来,最后只好码了个暴力,没想到正解和暴力之间就差一个小优化……
朴素的
O(n2)
暴力是固定左端点,然后R指针往右扫更新Min和Max值,令ans[Max-Min]加1,最后对ans数组做个前缀和。然而由于a数组是随机生成的,所以Max和Min的取值只会有log(n)个(题解上是这么说的,但我并不会具体的证明),于是我们只需要关注令Max和Min变化的R值就好了。那我们怎么知道Max和Min在什么时候变化呢?以Max为例,我们令L从右往左扫,并一边用一个元素值单调下降的栈维护Max变化的位置。这样L指针左移的时候,就相当于多了一个数字,将其加入栈顶,弹出前面比它小的元素,最后栈中的元素即为变化的Max值。
CODE:
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<stdio.h>
#include<algorithm>
using namespace std;
const int maxn=100100;
typedef long long LL;
LL sum[maxn];
int small[maxn];
int big[maxn];
int scur,bcur;
int a[maxn];
int t,n;
void Push(int x)
{
small[++scur]=x;
while ( scur>1 && a[ small[scur-1] ]>a[ small[scur] ] )
scur--,small[scur]=small[scur+1];
big[++bcur]=x;
while ( bcur>1 && a[ big[bcur-1] ]<a[ big[bcur] ] )
bcur--,big[bcur]=big[bcur+1];
}
int main()
{
freopen("sum.in","r",stdin);
freopen("sum.out","w",stdout);
scanf("%d",&t);
while (t--)
{
scur=bcur=0;
memset(sum,0,sizeof(sum));
scanf("%d",&n);
for (int i=1; i<=n; i++) scanf("%d",&a[i]);
sum[0]=n;
small[++scur]=n;
big[++bcur]=n;
for (int L=n-1; L>=1; L--)
{
Push(L);
int last=n+1,x=1,y=1;
while (small[x]!=big[y])
{
int now=max(small[x],big[y]);
sum[ a[ big[y] ]-a[ small[x] ] ]+=(last-now);
last=now;
if (big[y]>small[x]) y++;
else x++;
}
}
for (int i=1; i<n; i++) sum[i]+=sum[i-1];
for (int i=0; i<n; i++) printf("%lld\n",sum[i]);
}
return 0;
}