洛谷P4233:射命丸文的笔记 (计数原理+容斥原理+多项式求逆/分治NTT)

题目传送门:https://www.luogu.org/problemnew/show/P4233


题目分析:这道题是我打比赛的时候见到的,然而当时并没有想出来,连部分分都懒得写QAQ。后来我分析了一下为什么我总是不能够自己想出NTT的题目,发现其实是自己的计数,容斥,DP学得太差,省赛前还是要找个时间补一补。

别人已经写了很详细的题解了,我也就不啰嗦了:官方题解传送门

我补充一句:这题和BZOJ3456城市规划那题很像,只不过这题是枚举了拓扑图中标号最小的强连通分量,最后推出一条大概这样的式子:

G[n]=k=1nF[k]G[nk] G [ n ] = ∑ k = 1 n F [ k ] ∗ G [ n − k ]

已知G,要求F。然后有一种多项式求逆的新姿势:注意到这大概是一个F*G=G的形式,难道F是元函数?但这里k的下界是1。为了使k的下界变成0,我们强制使F[0]=0,然后令 A(x)=G(x)(x>0),A(0)=0 A ( x ) = G ( x ) ( x > 0 ) , A ( 0 ) = 0 ,这样便有A=F*G(G[0]原本为1,但因为F[0]强制为0,所以A[0]必须要是0)。然后使用多项式求逆,时间复杂度 O(nlog(n)) O ( n log ⁡ ( n ) )


CODE:

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<stdio.h>
#include<algorithm>
using namespace std;

const int maxn=1000000;
const long long M=998244353;
const long long g=3;
typedef long long LL;

LL A[maxn];
LL B[maxn];

int Rev[maxn];
int N,Lg;

LL F[maxn];
LL G[maxn];

LL fac[maxn];
LL nfac[maxn];
int n;

LL Pow(LL x,LL y)
{
    if (!y) return 1LL;
    LL temp=Pow(x,y>>1);
    temp=temp*temp%M;
    if (y&1) temp=temp*x%M;
    return temp;
}

void DFT(LL *a,int f)
{
    for (int i=0; i<N; i++)
        if (i<Rev[i]) swap(a[i],a[ Rev[i] ]);

    for (int len=2; len<=N; len<<=1)
    {
        int mid=(len>>1);
        LL e=Pow(g,(M-1)/len);
        if (f==-1) e=Pow(e,M-2);

        for (LL *p=a; p!=a+N; p+=len)
        {
            LL wn=1;
            for (int i=0; i<mid; i++)
            {
                LL temp=wn*p[mid+i]%M;
                p[mid+i]=(p[i]-temp+M)%M;
                p[i]=(p[i]+temp)%M;
                wn=wn*e%M;
            }
        }
    }
}

void NTT(bool rev)
{
    for (int i=0; i<N; i++)
    {
        Rev[i]=0;
        for (int j=0; j<Lg; j++)
            if (i&(1<<j)) Rev[i]|=(1<<(Lg-j-1));
    }

    DFT(A,1);
    DFT(B,1);
    if (rev) for (int i=0; i<N; i++) A[i]=A[i]*A[i]%M;
    for (int i=0; i<N; i++) A[i]=A[i]*B[i]%M;
    DFT(A,-1);

    LL inv=Pow(N,M-2);
    for (int i=0; i<N; i++) A[i]=A[i]*inv%M;
}

void Poly_Rev(int m)
{
    if (m==1) F[0]=Pow(G[0],M-2);
    else
    {
        Poly_Rev(m>>1);

        N=2*m,Lg=0;
        while ((1<<Lg)!=N) Lg++;
        for (int i=0; i<m; i++) A[i]=F[i],B[i]=G[i];
        for (int i=m; i<N; i++) A[i]=B[i]=0;
        NTT(true);

        for (int i=0; i<m; i++) F[i]=2LL*F[i]%M,F[i]=(F[i]-A[i]+M)%M;
    }
}

int main()
{
    freopen("4233.in","r",stdin);
    freopen("4233.out","w",stdout);

    scanf("%d",&n);

    N=1;
    while (N<=n+2) N<<=1;
    fac[0]=1;
    for (LL i=1; i<N; i++) fac[i]=fac[i-1]*i%M;
    for (int i=0; i<N; i++) nfac[i]=Pow(fac[i],M-2);
    for (LL i=0; i<N; i++) G[i]=Pow(2LL, i*(i-1LL)/2LL )*nfac[i]%M;
    Poly_Rev(N);

    N=1,Lg=0;
    while (N<2*n+2) N<<=1,Lg++;
    for (int i=0; i<=n; i++) A[i]=F[i],B[i]=G[i];
    for (int i=n+1; i<N; i++) A[i]=B[i]=0;
    B[0]=0;
    NTT(false);
    for (LL i=1; i<=n; i++)
    {
        A[i]=A[i]*fac[i]%M;
        if (!A[i]) printf("-1\n");
        else
        {
            LL ans=fac[i-1]*Pow(2LL, max(i*(i-1LL)/2LL-i,0LL) )%M;
            ans=ans*Pow(A[i],M-2)%M;
            printf("%I64d\n",ans);
        }
    }

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值