POJ3696:The Luckiest number (欧拉定理)

题目传送门:http://poj.org/problem?id=3696


题目大意:给出一个数L,请求出一个最小的数ans,使得ans全由8组成(即ans=88888……8),并且是L的倍数。要求输出ans的位数。多组数据。1L2109


题目分析:一道很神的题,要是思路错了就走远了。

我一开始的想法是把8提出来,然后化成11111……1的形式,结果什么都推不出来QAQ。后来膜了题解,发现自己果真走远了。题解是乘以一个98,变成99999……9的形式。这样的好处是99999……9(k个9)等于10k1。然后就可以一本正经地推式子:

98xL=10k1

9xL=8(10k1)

接下来我们求出L中质因子2的个数,很明显这个个数多于3便无解。若小于等于3,将其与8约去。在此不妨假设L中有两个2。令l=9L4,则式子变为:

xl=2(10k1)

右边的2应该由x贡献得来,所以便有:

10k1(modl)

现在我们要求最小的合法的k。

l是5的倍数,则这个式子无解。否则根据欧拉定理,若ap互质,则有akakmodϕ(p)(modp)。换句话说,由于10与l互质,所以10kϕ(l)为循环。而且由于10ϕ(l)1(modl),我们只要枚举ϕ(l)的因数e,查看10e是否符合要求即可(即是否有一个更小的循环)。注意快速幂的时候直接相乘会爆long long,要用快速乘。时间复杂度O(TLlog2(L))


CODE:

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<stdio.h>
#include<algorithm>
using namespace std;

typedef long long LL;

LL n;

LL Phi()
{
    LL sn=(long long)floor( sqrt( (double)n )+1e-4 );
    LL temp=n,N=n;
    for (LL i=2; i<=sn; i++) if (N%i==0)
    {
        while (N%i==0) N/=i;
        temp=temp/i*(i-1LL);
    }
    if (N>1) temp=temp/N*(N-1);
    return temp;
}

LL Mul(LL x,LL y)
{
    if (!y) return 0;
    LL temp=Mul(x,y>>1);
    temp=(temp+temp)%n;
    if (y&1) temp=(temp+x)%n;
    return temp;
}

LL Pow(LL x,LL y)
{
    if (!y) return 1LL;
    LL temp=Pow(x,y>>1);
    temp=Mul(temp,temp);
    if (y&1) temp=Mul(temp,x);
    return temp;
}

int main()
{
    freopen("3696.in","r",stdin);
    freopen("3696.out","w",stdout);

    int t=0;
    scanf("%I64d",&n);
    while (n)
    {
        t++;
        int num=0;
        while (!(n&1)) n>>=1,num++;
        if ( num>3 || n%5==0 ) printf("Case %d: 0\n",t);
        else
        {
            n*=9;
            LL m=Phi();
            LL sm=(long long)floor( sqrt( (double)m )+1e-4 );
            LL ans=m;
            for (LL i=1; i<=sm; i++) if (m%i==0)
            {
                if (Pow(10,i)==1) ans=min(ans,i);
                if (Pow(10,m/i)==1) ans=min(ans,m/i);
            }
            printf("Case %d: %I64d\n",t,ans);
        }
        scanf("%I64d",&n);
    }

    return 0;
}
发布了160 篇原创文章 · 获赞 76 · 访问量 10万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览