YOLOv8是一种经典的目标检测算法,它在计算机视觉领域取得了显著的成果。然而,为了进一步提高YOLOv8的性能,我们可以在其C2f模块中引入注意力机制,从而使其在目标检测任务上取得更好的效果。在本文中,我们将介绍如何改进YOLOv8,并提供相应的源代码。
首先,让我们了解一下YOLOv8的基本结构。YOLOv8由一个主干网络和三个不同尺度的检测头组成。主干网络负责提取图像特征,而检测头则负责预测不同尺度目标的位置和类别。C2f模块是YOLOv8主干网络中的一个关键模块,它用于将高层特征与低层特征进行融合,以获取更丰富的语义信息。
为了引入注意力机制,我们将在C2f模块的不同位置添加GAM(Global Attention Module,全局注意力模块)。GAM通过对特征图进行全局的空间注意力加权,使得网络能够更加关注重要的特征区域。下面是修改后的YOLOv8的代码片段:
import torch
import torch.nn as nn
import torch