RMQ(一维)

大佬: http://dongxicheng.org/structure/lca-rmq/

//求区间最大,最小换个函数就行
int a[N][20];int n,m;
int A[N];
void st_init()
{
    for(int i=1;i<=n;i++)
    {
        a[i][0]=A[i];
    }
    for(int j=1;(1<<j)<=n;j++)
    {
        int d=(1<<j);
        for(int i=1;i+d-1<=n;i++)
        {
            a[i][j]=max(a[i][j-1],a[i+d/2][j-1]);
        }
    }
}
int get_max(int l,int r)
{
    int k=(int)(log(r-l+1.0)/log(2.0));
    return 
        max(a[l][k],a[r-(1<<k)+1][k]);
}

预处理时的复杂度是O(n log n)的,而查询的复杂度为O(1),可以高效解决多组询问的题目,但基于ST表的写法无法对区间的值进行高效更新

首先是预处理,用动态规划(DP)解决。设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。例如数列3 2 4 5 6 8 1 2 9 7,F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。 F[1,2]=5,F[1,3]=8,F[2,0]=2,F[2,1]=4……从这里可以看出F[i,0]其实就等于A[i]。这样,DP的状态、初值都已经有了,剩下的就是状态转移方程。我们把F[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。F[i,j]就是这两段的最大值中的最大值。于是我们得到了动态规划方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。

然后是查询。取k=[log2(j-i+1)],则有:RMQ(A, i, j)=min{F[i,k],F[j-2^k+1,k]}。 举例说明,要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值