KunlunBase查询优化(二)Project和Filter下推

本文深入探讨了KunlunBase数据库的查询优化,重点在于Project和Filter操作的下推。通过实例展示了如何利用分片、过滤和投影来提升查询效率,并通过性能对比验证了分片表查询的优势。KunlunBase通过在存储节点进行数据读取和投影,减少了计算节点的负载,提高了查询速度。
摘要由CSDN通过智能技术生成

前言

上一篇讲述了KunlunBase的查询优化原理(KunlunBase),本篇讲述Project和Filter下推演示。

一、测试表基本信息

1.1 测试环境

本次测试演示投影和过滤操作的下推。

测试环境的数据库集群共有四个数据节点(DN), 配置为两个shard  (shard1和shard2),每个shard节点由一个主节点和一个从节点构成(shard1两个节点为数据复制关系,shard2两个节点也是数据复制关系,shard1 和shard2 存放数据表的不同分片数据)。如下图:

 可以通过下面语句显示集群环境的节点信息

select t1.name, t2.shard_id, t2.hostaddr, t2.port, t2.user_name, t2.passwd from pg_shard t1, pg_shard_node t2  where t2.shard_id=t1.id;

结果如下图:

1.2 表结构

本次测试的表结构如下图:

1.3 分片信息

表Customer1依据c_id字段,按范围分区,对应的分区表分别是:

Customer1_1,Customer1_2,Customer1_3,Customer1_4。 

4个分片数据分别存在两个shard里:

select t1.nspname, t2.relname,t2.relshardid, t2.relkindfrom pg_namespace t1 join pg_class t2 ont1.oid = t2.relnamespace where t2.relshardid != 0 and relkind='r' and relname like '%customer1%' order by t2.relname;

结果如下图:

1.4 数据分布

数据根据分片规则落于不同的分片存储里

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>