L1-009 N个数求和

本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式。

输入格式:

输入第一行给出一个正整数N(≤100)。随后一行按格式a1/b1 a2/b2 ...给出N个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。

输出格式:

输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分,其中分数部分写成分子/分母,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。

输入样例1:

5
2/5 4/15 1/30 -2/60 8/3

输出样例1:

3 1/3

输入样例2:

2
4/3 2/3

输出样例2:

2

输入样例3:

3
1/3 -1/6 1/8

输出样例3:

7/24

思路:

这个题的思路很简单,就是通过最小公倍数对分母进行通分,分子和分母最大公约数对结果进行化简,但是它有几个测试点比较恶心,应该考虑以下几种情况:

  1. 求多个数的最小公倍数时可能会超出整型的范围,可以用长整型(或者long long)

  1. 求最大公约数时不能出现为零的情况,因为分子不能为零

  1. 最后进行结果化简时,求分子和分母的最大公约数时,应该用分子的绝对值,否则分子为负时可能会造成符号错误。

方法一:每两个分数,依次通分

#include<iostream>
#include<cmath>
#define ll long long
using namespace std;
ll gcd(ll x,ll y)
{
    return y==0?x:gcd(y,x%y);//用递归求最大公约数
}
int main()
{
    ll a[300],b[300];
    ll n,fm=1,fz=0;//因为第一个数要保证不变,所以将分母先置为1分子先置0,分子要求通分后的和
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        scanf("%lld/%lld",&a[i],&b[i]);//a[],b[],分别存储分子分母
    }
    int i=1;
    while(n--)
    {
      fm=fm*b[i]/gcd(fm,b[i]);//两个数除以它们最的最大公约数等于最小公倍数
      if(i>=2)从第二次循环开始要求通分后分子的值
      fz=(fm/b[i-1])*a[i-1];//求通分后分子的值
      fz+=(fm/b[i])*a[i];
      a[i]=fz;//更新通分后的分子
      b[i]=fm;//更新通分后的分母,更新分子和分母是为了和下个数进行通分求和求和求和    
      i++;
    }
    ll t=gcd(fabs(fz),fm);//此时化简分子和分母(即同时除以它们最大公约数),分子要用绝对值传递
       fz/=t;
       fm/=t;    
    if(fz%fm==0)
        cout<<fz/fm<<endl;
    else if(fabs(fz)>fm)
        cout<<fz/fm<<' '<<fz%fm<<'/'<<fm<<endl;
    else
        cout<<fz%fm<<'/'<<fm<<endl;
    return 0;
}

方法二:求所有分母的最小公倍数,求通分后所有的分子之和,最后一块化简

#include<iostream>
#include<cmath>
#define  ll long long 
using namespace std;
ll gcd(ll x,ll y)
{
    return y==0?x:gcd(y,x%y);
}
int main()
{
    ll a[600],b[600];
    ll n,fm=1,fz=0;//要保证第一个数是它自己,故分母要先赋值为1
    cin>>n;
    for(int i=0;i<n;i++)//求所有数的最小公倍数
    {
    scanf("%lld/%lld",&a[i],&b[i]);
    fm=fm*b[i]/gcd(fm,b[i]);
    }
    for(int i=0;i<n;i++)
    {
    fz+=(fm/b[i])*a[i];//求通分后,所有分子的和            
    }
    ll t=gcd(fabs(fz),fm);化简,记得分子用绝对值传递
    fz/=t;
    fm/=t;
    if(fz%fm==0)
    cout<<fz/fm<<endl;
    else if(fabs(fz)>fm)
    cout<<fz/fm<<' '<<fz%fm<<' '<<fm<<endl;
    else
    cout<<fz%fm<<' '<<fm<<endl;
    return 0;
}

加油!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值