本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式。
输入格式:
输入第一行给出一个正整数N(≤100)。随后一行按格式a1/b1 a2/b2 ...给出N个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。
输出格式:
输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分,其中分数部分写成分子/分母,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。
输入样例1:
5
2/5 4/15 1/30 -2/60 8/3
输出样例1:
3 1/3
输入样例2:
2
4/3 2/3
输出样例2:
2
输入样例3:
3
1/3 -1/6 1/8
输出样例3:
7/24
思路:
这个题的思路很简单,就是通过最小公倍数对分母进行通分,分子和分母最大公约数对结果进行化简,但是它有几个测试点比较恶心,应该考虑以下几种情况:
求多个数的最小公倍数时可能会超出整型的范围,可以用长整型(或者long long)
求最大公约数时不能出现为零的情况,因为分子不能为零
最后进行结果化简时,求分子和分母的最大公约数时,应该用分子的绝对值,否则分子为负时可能会造成符号错误。
方法一:每两个分数,依次通分
#include<iostream>
#include<cmath>
#define ll long long
using namespace std;
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);//用递归求最大公约数
}
int main()
{
ll a[300],b[300];
ll n,fm=1,fz=0;//因为第一个数要保证不变,所以将分母先置为1分子先置0,分子要求通分后的和
cin>>n;
for(int i=1;i<=n;i++)
{
scanf("%lld/%lld",&a[i],&b[i]);//a[],b[],分别存储分子分母
}
int i=1;
while(n--)
{
fm=fm*b[i]/gcd(fm,b[i]);//两个数除以它们最的最大公约数等于最小公倍数
if(i>=2)从第二次循环开始要求通分后分子的值
fz=(fm/b[i-1])*a[i-1];//求通分后分子的值
fz+=(fm/b[i])*a[i];
a[i]=fz;//更新通分后的分子
b[i]=fm;//更新通分后的分母,更新分子和分母是为了和下个数进行通分求和求和求和
i++;
}
ll t=gcd(fabs(fz),fm);//此时化简分子和分母(即同时除以它们最大公约数),分子要用绝对值传递
fz/=t;
fm/=t;
if(fz%fm==0)
cout<<fz/fm<<endl;
else if(fabs(fz)>fm)
cout<<fz/fm<<' '<<fz%fm<<'/'<<fm<<endl;
else
cout<<fz%fm<<'/'<<fm<<endl;
return 0;
}
方法二:求所有分母的最小公倍数,求通分后所有的分子之和,最后一块化简
#include<iostream>
#include<cmath>
#define ll long long
using namespace std;
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
int main()
{
ll a[600],b[600];
ll n,fm=1,fz=0;//要保证第一个数是它自己,故分母要先赋值为1
cin>>n;
for(int i=0;i<n;i++)//求所有数的最小公倍数
{
scanf("%lld/%lld",&a[i],&b[i]);
fm=fm*b[i]/gcd(fm,b[i]);
}
for(int i=0;i<n;i++)
{
fz+=(fm/b[i])*a[i];//求通分后,所有分子的和
}
ll t=gcd(fabs(fz),fm);化简,记得分子用绝对值传递
fz/=t;
fm/=t;
if(fz%fm==0)
cout<<fz/fm<<endl;
else if(fabs(fz)>fm)
cout<<fz/fm<<' '<<fz%fm<<' '<<fm<<endl;
else
cout<<fz%fm<<' '<<fm<<endl;
return 0;
}
加油!!!