2021-05-数据异常检测-task2

今天了基于统计学方法的异常检测:
1.高斯分布
2.箱线图
3.HBOS

目前我只看到了这三个,hbos我看不太懂。先暂时放一放

1、概述
统计学方法对数据的正常性做出假定。**它们假定正常的数据对象由一个统计模型产生,而不遵守该模型的数据是异常点。**统计学方法的有效性高度依赖于对给定数据所做的统计模型假定是否成立。

异常检测的统计学方法的一般思想是:学习一个拟合给定数据集的生成模型,然后识别该模型低概率区域中的对象,把它们作为异常点。

即利用统计学方法建立一个模型,然后考虑对象有多大可能符合该模型。

根据如何指定和学习模型,异常检测的统计学方法可以划分为两个主要类型:参数方法和非参数方法。

参数方法假定正常的数据对象被一个以 Θ \Theta Θ为参数的参数分布产生。该参数分布的概率密度函数 f ( x , Θ ) f(x,\Theta) f(x,Θ)给出对象 x x x被该分布产生的概率。该值越小, x x x越可能是异常点。

非参数方法并不假定先验统计模型,而是试图从输入数据确定模型。非参数方法通常假定参数的个数和性质都是灵活的,不预先确定(所以非参数方法并不是说模型是完全无参的,完全无参的情况下从数据学习模型是不可能的)。

2、参数方法
2.1 基于正态分布的一元异常点检测

仅涉及一个属性或变量的数据称为一元数据。我们假定数据由正态分布产生,然后可以由输入数据学习正态分布的参数,并把低概率的点识别为异常点。

假定输入数据集为 x ( 1 ) , x ( 2 ) , . . . , x ( m ) {x^{(1)}, x^{(2)}, ..., x^{(m)}} x(1),x(2),...,x(m),数据集中的样本服从正态分布,即 x ( i ) ∼ N ( μ , σ 2 ) x^{(i)}\sim N(\mu, \sigma^2) x(i)N(μ,σ2),我们可以根据样本求出参数 μ \mu μ σ \sigma σ

μ = 1 m ∑ i = 1 m x ( i ) \mu=\frac 1m\sum_{i=1}^m x^{(i)} μ=m1i=1mx(i)

σ 2 = 1 m ∑ i = 1 m ( x ( i ) − μ ) 2 \sigma^2=\frac 1m\sum_{i=1}^m (x^{(i)}-\mu)^2 σ2=m1i=1m(x(i)μ)2

求出参数之后,我们就可以根据概率密度函数计算数据点服从该分布的概率。正态分布的概率密度函数为

p ( x ) = 1 2 π σ e x p ( − ( x − μ ) 2 2 σ 2 ) p(x)=\frac 1{\sqrt{2\pi}\sigma}exp(-\frac{(x-\mu)^2}{2\sigma^2}) p(x)=2π σ1exp(2σ2(xμ)2)

如果计算出来的概率低于阈值,就可以认为该数据点为异常点。

阈值是个经验值,可以选择在验证集上使得评估指标值最大(也就是效果最好)的阈值取值作为最终阈值。

例如常用的3sigma原则中,如果数据点超过范围 ( μ − 3 σ , μ + 3 σ ) (\mu-3\sigma, \mu+3\sigma) (μ3σ,μ+3σ),那么这些点很有可能是异常点。

这个方法还可以用于可视化。箱线图对数据分布做了一个简单的统计可视化,利用数据集的上下四分位数(Q1和Q3)、中点等形成。异常点常被定义为小于Q1-1.5IQR或大于Q3+1.5IQR的那些数据。

用Python画一个简单的箱线图:

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

data = np.random.randn(50000) * 20 + 20
sns.boxplot(data=data)
2.2 多元异常点检测

涉及两个或多个属性或变量的数据称为多元数据。许多一元异常点检测方法都可以扩充,用来处理多元数据。其核心思想是把多元异常点检测任务转换成一元异常点检测问题。例如基于正态分布的一元异常点检测扩充到多元情形时,可以求出每一维度的均值和标准差。对于第 j j j维:

μ j = 1 m ∑ i = 1 m x j ( i ) \mu_j=\frac 1m\sum_{i=1}^m x_j^{(i)} μj=m1i=1mxj(i)

σ j 2 = 1 m ∑ i = 1 m ( x j ( i ) − μ j ) 2 \sigma_j^2=\frac 1m\sum_{i=1}^m (x_j^{(i)}-\mu_j)^2 σj2=m1i=1m(xj(i)μj)2

计算概率时的概率密度函数为

p ( x ) = ∏ j = 1 n p ( x j ; μ j , σ j 2 ) = ∏ j = 1 n 1 2 π σ j e x p ( − ( x j − μ j ) 2 2 σ j 2 ) p(x)=\prod_{j=1}^n p(x_j;\mu_j,\sigma_j^2)=\prod_{j=1}^n\frac 1{\sqrt{2\pi}\sigma_j}exp(-\frac{(x_j-\mu_j)^2}{2\sigma_j^2}) p(x)=j=1np(xj;μj,σj2)=j=1n2π σj1exp(2σj2(xjμj)2)

这是在各个维度的特征之间相互独立的情况下。如果特征之间有相关性,就要用到多元高斯分布了。

1.3 多个特征相关,且符合多元高斯分布

μ = 1 m ∑ i = 1 m x ( i ) \mu=\frac{1}{m}\sum^m_{i=1}x^{(i)} μ=m1i=1mx(i)

∑ = 1 m ∑ i = 1 m ( x ( i ) − μ ) ( x ( i ) − μ ) T \sum=\frac{1}{m}\sum^m_{i=1}(x^{(i)}-\mu)(x^{(i)}-\mu)^T =m1i=1m(x(i)μ)(x(i)μ)T

p ( x ) = 1 ( 2 π ) n 2 ∣ Σ ∣ 1 2 exp ⁡ ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) p(x)=\frac{1}{(2 \pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) p(x)=(2π)2nΣ211exp(21(xμ)TΣ1(xμ))

ps:当多元高斯分布模型的协方差矩阵 ∑ \sum 为对角矩阵,且对角线上的元素为各自一元高斯分布模型的方差时,二者是等价的。

3.使用混合参数分布

在许多情况下假定数据是由正态分布产生的。当实际数据很复杂时,这种假定过于简单,可以假定数据是被混合参数分布产生的。

3、非参数方法
在异常检测的非参数方法中,“正常数据”的模型从输入数据学习,而不是假定一个先验。通常,非参数方法对数据做较少假定,因而在更多情况下都可以使用。

例子:使用直方图检测异常点。

直方图是一种频繁使用的非参数统计模型,可以用来检测异常点。该过程包括如下两步:

步骤1:构造直方图。使用输入数据(训练数据)构造一个直方图。该直方图可以是一元的,或者多元的(如果输入数据是多维的)。

尽管非参数方法并不假定任何先验统计模型,但是通常确实要求用户提供参数,以便由数据学习。例如,用户必须指定直方图的类型(等宽的或等深的)和其他参数(直方图中的箱数或每个箱的大小等)。与参数方法不同,这些参数并不指定数据分布的类型。

步骤2:检测异常点。为了确定一个对象是否是异常点,可以对照直方图检查它。在最简单的方法中,如果该对象落入直方图的一个箱中,则该对象被看作正常的,否则被认为是异常点。

对于更复杂的方法,可以使用直方图赋予每个对象一个异常点得分。例如令对象的异常点得分为该对象落入的箱的容积的倒数。

使用直方图作为异常点检测的非参数模型的一个缺点是,很难选择一个合适的箱尺寸。一方面,如果箱尺寸太小,则许多正常对象都会落入空的或稀疏的箱中,因而被误识别为异常点。另一方面,如果箱尺寸太大,则异常点对象可能渗入某些频繁的箱中,因而“假扮”成正常的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值