模型评估
 详细参考
 1.分类度量:
 sklearn.metrics模块实现了几种损失函数、评分函数和功能函数来测量分类性能。 某些指标可能需要正例,置信度值或二进制决策值的概率估计。 大多数指标应用的是:通过sample_weight参数,让每个样本为总分提供加权贡献。
 其中一些仅限于二进制分类案例:
 
 还有一些仅限于多分类情形:

 还有一些可用于多标签情形:
 
 而且许多是用于二分类和多标签问题的,但不适用于多分类:

 一些是通常用于分级的:

博客围绕模型评估中的分类度量展开,提到sklearn.metrics模块实现了多种测量分类性能的函数,包括损失函数、评分函数等。某些指标有特定适用场景,如正例、置信度值等,且不同指标适用于二进制分类、多分类、多标签等不同情形。
          模型评估
 详细参考
 1.分类度量:
 sklearn.metrics模块实现了几种损失函数、评分函数和功能函数来测量分类性能。 某些指标可能需要正例,置信度值或二进制决策值的概率估计。 大多数指标应用的是:通过sample_weight参数,让每个样本为总分提供加权贡献。
 其中一些仅限于二进制分类案例:
 
 还有一些仅限于多分类情形:

 还有一些可用于多标签情形:
 
 而且许多是用于二分类和多标签问题的,但不适用于多分类:

 一些是通常用于分级的:


被折叠的  条评论
		 为什么被折叠?