模型评估

博客围绕模型评估中的分类度量展开,提到sklearn.metrics模块实现了多种测量分类性能的函数,包括损失函数、评分函数等。某些指标有特定适用场景,如正例、置信度值等,且不同指标适用于二进制分类、多分类、多标签等不同情形。

模型评估
详细参考
1.分类度量:
sklearn.metrics模块实现了几种损失函数、评分函数和功能函数来测量分类性能。 某些指标可能需要正例,置信度值或二进制决策值的概率估计。 大多数指标应用的是:通过sample_weight参数,让每个样本为总分提供加权贡献。
其中一些仅限于二进制分类案例:
在这里插入图片描述
还有一些仅限于多分类情形:

在这里插入图片描述
还有一些可用于多标签情形:
在这里插入图片描述
而且许多是用于二分类和多标签问题的,但不适用于多分类:

在这里插入图片描述
一些是通常用于分级的:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值