LassoCV特征选择

1、加载数据

from sklearn.linear_model import Lasso
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score

boston = load_boston()
scaler = StandardScaler()
X = scaler.fit_transform(boston["data"])
Y = boston["target"]
names = boston["feature_names"]

2、选择最优的正则化参数

from sklearn.linear_model import LassoCV
model_lasso = LassoCV(alphas = [0.1,1,0.001, 0.0005]).fit(X,Y)
model_lasso.alpha_

在这里插入图片描述
3、输出看模型最终选择了几个特征向量,剔除了几个特征向量

import pandas as pd
coef = pd.Series(model_lasso.coef_, index = names)
print("Lasso picked " + str(sum(coef != 0)) + " variables and eliminated the other " +  str(sum(coef == 0)) + " variables")

在这里插入图片描述
4、画出特征变量的重要程度

import matplotlib
imp_coef = pd.concat([coef.sort_values().head(3),
                     coef.sort_values().tail(3)])

matplotlib.rcParams['figure.figsize'] = (8.0, 10.0)
coef.plot(kind = "barh")
plt.title("Coefficients in the Lasso Model")
plt.show() 
### 使用Lasso回归进行特征选择 #### Lasso回归简介 Lasso(Least Absolute Shrinkage and Selection Operator)是一种用于估计稀疏系数的线性模型。通过引入L1正则化项,使得一些特征的系数变为零,从而实现了自动化的特征选择过程[^1]。 #### 特征选择原理 由于Lasso加入了绝对值形式的惩罚因子,在优化过程中会迫使某些参数收缩至0,这样就相当于把这些对应的变量排除出了最终的预测方程之外。对于那些对目标变量影响较小或者说冗余度较高的输入属性来说,它们很容易被这种机制所剔除掉[^3]。 #### Python实现示例 下面是一个简单的Python代码片段展示如何利用`sklearn`库中的`LassoCV`来进行特征筛选: ```python from sklearn.linear_model import LassoCV import numpy as np import pandas as pd # 假设X为训练集数据矩阵,y为目标向量 data = {'Feature_1': [2, 8, 0, 4], 'Feature_2': [7, 9, 6, 5], 'Feature_3': [1, 5, 3, 2], 'Target': [1, 0, 1, 0]} df = pd.DataFrame(data) X = df[['Feature_1', 'Feature_2', 'Feature_3']] y = df['Target'] # 创建并拟合LassoCV对象 model = LassoCV(cv=5).fit(X, y) print("最佳alpha:", model.alpha_) print("各个特征的重要性(非标准化):", abs(model.coef_)) selected_features = X.columns[(abs(model.coef_) > 0)] print(f"选定的重要特征:{list(selected_features)}") ``` 这段程序首先创建了一个包含三个自变量的数据框,并指定了一个因变量作为标签列;接着定义了`LassoCV`实例并通过调用其`.fit()`方法完成建模工作;最后打印出经过交叉验证选出的最佳超参α以及各维度下权重大小,并据此判断哪些字段应该保留下来参与后续分析任务中去[^2]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值