题目大意:有一个人能够克隆自己,这个人有n种能力,克隆出来的人也有相应的n种能力,如果一个克隆人的所有的能力没有一种能力大于另一个克隆人的能力(能力1只能和能力1比较,能力2只能和能力2比较,以此类推),那么这个克隆人就会消失,问最多能克隆出多少人
解题思路:首先要确定一下那些克隆人的能力,还要确保克隆人都存在
这里有个规律,如果克隆人的所有能力和为n种能力和sum的一半的话,那么这些克隆人就都能共存了
现在要求的是能力和为sum/2情况有多少种
设dp[i][j]为前i种能力和为j的情况有多少种,如果第i+1能力为k的话,则dp[i+1][j+k] = (dp[i+1][j+k] + dp[i][j])
#include<cstdio>
#include<cstring>
using namespace std;
#define maxn 2010
const int mod = 1e9 + 7;
int dp[maxn][maxn], num[maxn], n;
int main() {
int test;
scanf("%d", &test);
while(test--) {
scanf("%d", &n);
int sum = 0;
for(int i = 0; i < n; i++) {
scanf("%d", &num[i]);
sum += num[i];
}
memset(dp,0,sizeof(dp));
dp[0][0] = 1;
for(int i = 0; i < n; i++)
for(int j = 0; j <= sum; j++)
for(int k = 0; k <= num[i]; k++)
dp[i+1][k+j] = (dp[i][j] + dp[i+1][k+j]) % mod;
printf("%d\n", dp[n][sum/2]);
}
return 0;
}