基于传染病模型中的再生数R0的讨论【基于matlab的动力学模型学习笔记_2】

本文探讨了传染病模型中基本再生数R0的重要性,通过MATLAB模拟分析了恢复率、死亡率和传染系数对R0的影响。结果显示,R0的大小直接影响病毒的传播趋势,医疗水平、防范措施与病毒流行密切相关。
摘要由CSDN通过智能技术生成

/*仅当作学习笔记,若有纰漏欢迎友好交流指正,此外若能提供一点帮助将会十分荣幸*/

在上一篇博文中介绍了病毒模型的基本计算思路方法,而本文将会重点讨论基本再生数R0-这个决定病毒是继续发展还是衰减的关键指标。

摘 要:过去的半个多世纪,传染病模型在数学生态学领域已受广泛重视。而再生数又是考量传染病能否流行的指标性因素,因此本文将基于传统病毒模型讨论不同因素对再生数的影响,以及再生数的大小对病毒传播的影响。

0 引言                                   

研究疾病、病毒的传播和扩散机制以及相应的预防措施是当前复杂系统和传染病动力学研究领域的热点问题。基本再生数是考量病毒能否流行的指标性因素,但R0>1时,代表病毒将会继续流行传播;当R0<1时,代表病毒的传播势头将会呈下降趋势,直至最终灭亡。

本文将讨论不同模型下的无病平衡点以及染病平衡点条件下的再生数,来分析其是否具备流行性。

1 正平衡条件下的基本再生数                                  

在本节中仅仅对传统的传染病模型进行一个简单的分析,最常用的方法就是根据无病平衡点的局部稳定性,采用再生矩阵的方法求出基本再生数。

1.1 病毒模型搭建                                  

设有SIR模型:

其中,S(T)、I(T)、R(t)中分别代表群体中易感者、染病者及恢复(移出)者的个数。这里假定新出生的人口数为A,自然死亡率为d,恢复率为γ,传染(对易感人群来说就是感染系数)系数为β。

根据模型(1.2),若我们要求其无病毒平衡点,即设置初始条件:即S(T)、I(T)、R(t)的变化率为0,也就是: 

所以(1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值