前向神经网络的分析介绍

本文介绍了前向神经网络的基本结构,包括输入层、隐层和输出层。首先讲解了感知器的原理和作用,然后重点讨论了误差反向传播算法(BP算法)及其在多层神经网络中的应用。BP算法通过正向传播和反向传播调整神经元权重,以减小输出误差。文中还提到了Sigmoid激活函数的特点和作用。
摘要由CSDN通过智能技术生成

目录

1 感知器

2 BP算法


前向神经网络包括输入层、隐层和输出层,如下图所示。

图1. 3层神经网络 

 在前向神经网络中,只有前后相邻两层之间的神经元之间相互连接,各神经元之间并没有反馈。每个神经元可以从前一层接收多个输入,并且只有一个输出给下一层的神经元。

1 感知器

感知器是一种早期的神经网络,由美国人F.Rosenblatt提出。感知器中第一次引入了学习的概念,使人脑所具备的学习功能在基于符号处理的数学模型中得到了一定程度的模拟,所以引起了广泛的关注。感知器是最简单的前向神经网络。主要用于模式分类,其模型如下图2所示。

图2. 单层感知器

 感知器处理单元对n个输入进行加权和操作,并输出为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值