复变函数可视化-复积分

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/L1558198727/article/details/90439125

复变函数的积分
z0z1f(z)dz=f(Δz)Δz \int_{ z_{0} }^{ z_{1} }f(z)dz\\ =\sum f(\Delta z) \Delta z

每一小段的复数值(一个向量),乘以中间的某个值


积分法则(类比实变函数积分)

常数可以提出来
积分可以分段积分

留数
用积分计算泰勒展开的系数


积分与路径无关的条件

沿环路的积分为0

条件

如果f(z)在整个区域内是解析的,则与路径无关

Eg:
f(z)=1z f(z) = \frac{1}{z}在单位圆一周的积分
对每一小段进行分析,发现每一小段的积分都是竖直向上的,就是一直竖直向上的加和,2πi2\pi i
这个积分的值和半径大小无关,不是单位圆上的圆的积分值也是 2πi2\pi i

一般地
Lzαdz \oint_{L} z^{\alpha}dz
α\alpha=-1的时候是2πi2\pi i,为其他值的时候,积分值为0


共轭映射
Im(ab的共轭),叉乘是面积的2倍


Lzˉdz \oint_{L}\bar{z}dz


计算几何,给定点集,将平面分块,使得每一块包含一个点
voronia图

展开阅读全文

没有更多推荐了,返回首页