之所以要定义弧度制,是因为它的单位相比角度制有很大的优越性.
弧度的大小是两个长度之比,长度的单位是统一的,所以相比以后,可以认为弧度的单位为1,即以实数单位为单位. 弧度可以看做导出单位.
而角度制则不然,角度制单位是1/360周角,然而,1/360是怎么来的?为什么是周角除360而不是其它的数呢?这只有一个解释:周角/360,即1°是人们根据当时的条件和需要规定的(就如人们为了计算长度而规定了1m一样).这就意味着角度相当于一个基本单位,是不能用通过公式用其它基本单位(如长度,时间)来导出的.
我们知道,只有同量纲的量才能相加减. 弧度与三角函数都是长度之比,因而具有相同的量纲. 这使得弧度和三角函数值相加减有意义,这是它最大的优越性之一. 角度不是长度之比,因而就绝对不能和三角函数值相加减.
在中学数学中,我们还难以看到弧度制的优越性,如果学了微分以后,有一个微分近似计算公式,它是△y≈f'(x)△x
也可写作 f(x+△x)≈f(x)+f'(x)△x
其中△x越小就越精确. 如果取f(x)=sin x
那么Sin(x+△x)≈Sin(x)+Cos(x)△x
利用这一公式,就可以容易地计算出Sin31°的值了. 计算时,必须使用弧度制,否则△x为角度制单位,那么Sin(x)+Cos(x)△x没有意义,更别说和Sin(x+△x)相等了.
你可以试一试,用角度制,把角度单位错误地看作1,算算误差有多大. 再用弧度制,误差不到0.001 .
考研数学(180°为什么等于π)
最新推荐文章于 2024-10-27 18:46:05 发布