进入多核时代的C++
几年之前,CPU的性能还主要取决于CPU的主频,经过超摩尔定律的发展后,没过多长时间CPU的主频速度就已接近“极限”,使得单单靠提高CPU的主频来提升性能变得非常困难。
目前,Intel、AMD等CPU生产商都转而采用了多核技术来提升CPU性能,甚至提出了群核CPU的概念。这意味着,要充分发挥多核CPU的性能,程序就必须采用多线程并发计算的方式,传统的串行程序将会极大地浪费多核CPU的运算能力!
C++是上世纪80年代诞生的语言,它的前身是同样风靡全球的C语言。一直以来它都以代码效率卓越著称,进入多核时代后,因为C++标准库没有提供多线程支持,要用C++开发出充分利用多核CPU的程序将面临很大挑战。
于是,在C++社区出现了不少优秀的库以支持并行编程,如各种跨平台的线程库,OpenMP,Clik++等。另一方面,微软也从Win2K开始不断地加入线程池API(如QueueUserWorkItem),C++09标准也明确地表示要加入多线程的支持。
使用线程库编写并行程序的优点是可以精确调度各个线程,并且可以在所有C++编译器里使用。不过要充分发挥多核CPU的性能,还要考虑很多因素,主要难点有:
· 死锁 编写多线程必然会遇到同步问题,如果同步控制出现问题,就可能出现死锁或脏数据。
· 线程之间通信 使用何种机制在多个线程之间通信?即要保证通信数据同步又要保证效率。
· 负载平衡 分配到每个线程的工作量要尽量平衡,避免一个线程忙一个线程闲的情形发生。
· 资源匹配 程序应该使用多少个线程?过少的线程不能充分利用CPU的多核优势,而过多的线程会造成线程调度过于频繁同样会降低效率。
OpenMP是目前比较流行的C++并行编程方式,它通过在代码中插入专用的pragma编译指令来指示编译器把串行代码编译成并行程序。
它的优点是易于使用,几乎不用修改原代码就可对老程序进行并发支持的改造。问题是它必须要有编译器的支持,尽管目前不少编译器都提供了OpenMP的支持,但它毕竟不是C++的一部分,甚至它都不是真正意义上的C++库。使用OpenMP的C++代码看上去总是有些怪异(个人观点^_^)。
现在,我们又有了一个新选择:Intel Thread Building Blocks(TBB,线程构建模块)。TBB是一个开源的C++模板库,能够运行在 Windows、Linux、Macintosh以及UNIX等系统上,只要是标准的C++编译器都可以使用它。
TBB的功能和优势
功能 | 优势 |
基于任务的并行化 | 在逻辑任务而非物理线程的角度来指定线程功能 · 让开发者关注更高层的可扩展任务级模式而非底层的线程机制 · 使用被证实可有效利用多内核的数据分解提取技术 · 自动负载平衡 · 高效地支持嵌套并行化,允许从一个并行组件中建立出一个新的并行组件 |
并行算法 | 从库中选择高效并行算法模板,即可快速地获得多核处理器带来的优势。 · 快速应用为并行性能及可量测性而设计的算法。 · 范型模板让你轻易地把它们定制成你所需要的算法。 · 支持简单插件部署到应用中提升软件速度,优化内核和本地缓存。 · 依靠预置的并行结构,在很多情况下都能减少生产多线程软件的工作量。 |
跨平台支持 | 编写一次应用就可以部署到多个操作系统中。 · 为32位和64位的Windows*、Linux* 和 Mac OS* X 平台提供一种解决方案。 · 支持Intel、Microsoft及GNU的业界领先的编译器。 · 加快在多种多核平台中部署应用软件的速度。 |
程序库级解决方案 | 只需花费很小的精力就可得到高优化的并行功能。 · 你的 C++ 应用程序只需调用Intel Threading Building Blocks 库。 · 标准 C++ - 不需要使用新语言重写代码。 · 兼容其它线程包。 · 可无限制地和你的软件一起分发运行时库。 · 无缝整合到已有的开发环境中。 |
高并发容器 | 优化处理器的能力实现任务并发 · 使用线程安全并且高并发的接口简化多线程应用的开发。 · 使用预测试的数据结构提升应用软件质量。 · 更高效率的内核或处理器多路执行来提升应用软件性能。 |
示例:
用TBB写并行transform代替原std::transform
1. #include <iostream>
2. #include <algorithm>
3. #include <vector>
4. #include <list>
5. #include <math.h>
6. #include <tbb/task_scheduler_init.h>
7. #include <tbb/blocked_range.h>
8. #include <tbb/parallel_for.h>
9. #include <tbb/pipeline.h>
10. #include <tbb/tick_count.h>
11. //-----------------随机存取迭代器版本-------------------------------------
12. //both_random_helper,作用:测试两个模板是否都是random_access_iterator_tag
13. //是则Iter_cat返回random_access_iterator_tag
14. //否则返回forward_iterator_tag
15. template<class _Cat1, class _Cat2>
16. struct both_random_helper{
17. typedef std::forward_iterator_tag Iter_cat;
18. };
19. template<>
20. struct both_random_helper<
21. std::random_access_iterator_tag,
22. std::random_access_iterator_tag>{
23. typedef std::random_access_iterator_tag Iter_cat;
24. };
25. // 用于存放一对迭代器
26. template<class _InIt, class _OutIt>
27. struct Iter_pair{
28. _InIt m_in;
29. _OutIt m_out;
30. Iter_pair(_InIt _in, _OutIt _out)
31. :m_in(_in),m_out(_out){}
32. //支持blocked_range拆分
33. Iter_pair operator+(size_t off) const
34. {
35. return Iter_pair(m_in+off, m_out+off);
36. }
37. size_t operator-(Iter_pair rhs) const
38. {
39. return m_in-rhs.m_in;
40. }
41. bool operator<(Iter_pair rhs) const
42. {
43. return m_in<rhs.m_in;
44. }
45. };
46. // 随机存取迭代器版本
47. template<class _InIt, class _OutIt, class _Fn1>
48. struct op_parallel_transform{
49. op_parallel_transform(_Fn1 _Func)
50. :m_Func(_Func){}
51. void operator()(const tbb::blocked_range<Iter_pair<_InIt,_OutIt> > &r) const
52. {
53. std::transform(r.begin().m_in, r.end().m_in, r.begin().m_out, m_Func);
54. }
55. private:
56. _Fn1 m_Func;
57. };
58. template<class _InIt, class _OutIt, class _Fn1>
59. _OutIt _parallel_transform(_InIt _First, _InIt _Last, _OutIt _Dest, _Fn1 _Func, std::random_access_iterator_tag)
60. {
61. // 使用parallel_for来处理
62. typedef typename Iter_pair<_InIt,_OutIt> iter_pair_type;
63. _OutIt LastDest = _Dest + (_Last - _First);
64. iter_pair_type begin(_First, _Dest);
65. iter_pair_type end(_Last, LastDest);
66. tbb::blocked_range<iter_pair_type> x(begin, end);
67. tbb::parallel_for(x, op_parallel_transform<_InIt,_OutIt,_Fn1>(_Func), tbb::auto_partitioner());
68. return LastDest;
69. }
70. //-----------------顺序存取迭代器版本-------------------------------------
71. template<class _InIt>
72. struct filter_in : tbb::filter{
73. filter_in(_InIt _First, _InIt _Last)
74. :tbb::filter(true),m_First(_First), m_Last(_Last){}
75. void* operator()(void*)
76. {
77. if(m_First==m_Last) return NULL;
78. void* p = &(*m_First);
79. ++m_First;
80. return p;
81. }
82. private:
83. _InIt m_First, m_Last;
84. };
85. template<class _Fn1>
86. struct filter_process : tbb::filter{
87. typedef typename _Fn1::result_type r_type;
88. typedef typename _Fn1::argument_type a_type;
89. filter_process(_Fn1 _Func)
90. :tbb::filter(false),m_Func(_Func){}
91. void* operator()(void* data)
92. {
93. a_type &at = *(a_type*)data;
94. m_r = m_Func( at );
95. return &m_r;
96. }
97. private:
98. _Fn1 m_Func;
99. r_type m_r;
100. };
101. template<class _OutIt, class _DataType>
102. struct filter_out : tbb::filter{
103. filter_out(_OutIt _Dest)
104. :tbb::filter(true),m_Dest(_Dest){}
105. void* operator()(void* data)
106. {
107. _DataType *p = (_DataType*) data;
108. *m_Dest = *p;
109. ++m_Dest;
110. return NULL;
111. }
112. private:
113. _OutIt m_Dest;
114. };
115. template<class _InIt, class _OutIt, class _Fn1>
116. _OutIt _parallel_transform(_InIt _First, _InIt _Last, _OutIt _Dest, _Fn1 _Func, std::forward_iterator_tag)
117. {
118. // 使用管线pipeline来处理
119. tbb::pipeline pipeline;
120. filter_in<_InIt> f1(_First, _Last);
121. filter_process<_Fn1> f2(_Func);
122. filter_out<_OutIt, _Fn1::result_type> f3(_Dest);
123. pipeline.add_filter(f1);
124. pipeline.add_filter(f2);
125. pipeline.add_filter(f3);
126. pipeline.run(3);
127. return _Dest;
128. }
129. //----------------------parallel_transform----------------------------
130. template<class _InIt, class _OutIt, class _Fn1>
131. inline
132. _OutIt parallel_transform(_InIt _First, _InIt _Last, _OutIt _Dest, _Fn1 _Func)
133. {
134. typedef typename std::iterator_traits<_InIt>::iterator_category cat1;
135. typedef typename std::iterator_traits<_OutIt>::iterator_category cat2;
136. return _parallel_transform(_First, _Last, _Dest, _Func, both_random_helper<cat1,cat2>::Iter_cat());
137. }
138. // 测试代码
139. struct SinFunctor
140. :std::unary_function<double, double>{
141. double operator()(double &d) const
142. {
143. // 高强度运算
144. double sum = 0;
145. for(int i=0; i<10000; i++) sum += sin(i*d);
146. return sum;
147. }
148. };
149. int main()
150. {
151. // 随机存取迭代
152. std::vector<double> a(10000,1.5);
153. // 顺序存取迭代
154. std::list<double> b(10000,1.5);
155. tbb::task_scheduler_init init;
156. tbb::tick_count t0,t1;
157. t0 = tbb::tick_count::now();
158. parallel_transform(a.begin(), a.end(), a.begin(), SinFunctor());
159. t1 = tbb::tick_count::now();
160. std::cout << "并行(随机迭代)" << (t1 - t0).seconds() << std::endl;
161.
162. t0 = tbb::tick_count::now();
163. std::transform(a.begin(), a.end(), a.begin(), SinFunctor());
164. t1 = tbb::tick_count::now();
165. std::cout << "原版(随机迭代)" << (t1 - t0).seconds() << std::endl;
166. t0 = tbb::tick_count::now();
167. parallel_transform(b.begin(), b.end(), b.begin(), SinFunctor());
168. t1 = tbb::tick_count::now();
169. std::cout << "并行(顺序迭代)" << (t1 - t0).seconds() << std::endl;
170. t0 = tbb::tick_count::now();
171. std::transform(b.begin(), b.end(), b.begin(), SinFunctor());
172. t1 = tbb::tick_count::now();
173. std::cout << "原版(顺序迭代)"<< (t1 - t0).seconds() << std::endl;
174.
175. std::cin.get();
176. return 0;
177. }
在我的双核Centrino电脑上测试结果如下:
并行(随机迭代)3.17299
原版(随机迭代)5.41531
并行(顺序迭代)3.13054
原版(顺序迭代)5.33182
在顺序存取迭代器版本的_parallel_transform中,因为迭代器不能随意跳转,所以使用了tbb::pipeline加三个filter分别执行顺序读取,处理和写入。其中的处理是可以并行处理的。从上面的结果可以看出,pipeline的性能甚至不亚于parallel_for循环。关于 pipeline的使用说明,请参考文章:TBB流水线
这里写的parallel_transform可以直接替换大家原有代码中的std::transform,当然如果有兴趣的话完全可以把标准库中的算法全用TBB改写成并行算法。不过要注意的一点是并不是任何地方都适合使用并行运算的,象这个例子中测试用的处理算子是“for(int i=0; i<10000; i++) sum += sin(i*d);”这样的需要耗时较长的运算,如果把它改成“return sin(d);”。那么考虑到线程调度以及TBB的任务调度,并行算法的效率可能还不如串行算法。
TBB库可以从这里下载:http://www.threadingbuildingblocks.org/download.php
另外再推荐几篇TBB入门文章:
Intel Threading Building Blocks 之 并行循环
Intel Threading Building Blocks 之 并发容器
Intel Threading Building Blocks 基于任务编程
相信度过了自己的20岁生日之后的C++,在多核时候将再创辉煌!