约瑟夫的数论问题 UVa 1363

余数呈商的等差数列,那么我们可以枚举商的整数部分,求每一个的等差数列和,假设商的整数部分为i,那么末项是k%(k/(i-1)),首项是k%(k/i+1),我们枚举到sqrt(k),如果n>k的话,那么上面的部分就是(n-k)*k.

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll n,k;
ll qurey(ll n,ll k)
{
      ll sum=0;
      ll a=(ll)sqrt(k);
      ll b=k/a;
      ll i;
      if(n>k)
      {
            sum+=(n-k)*k;
      }
      for( i=a;i>1;i--)
      {
            ll e=k/(i-1);
            ll s=k/i;
            if(s>n)
            {
                  break;
            }
            if(e>n)
            {
                  e=n;
            }
            sum+=(k%(s+1)+k%e)*(e-s)/2;
      }
      for(i=1;i<=n&&i<=b;i++)
      {
            sum+=k%i;
      }
      return sum;
}
int main( )
{
      while(~scanf("%lld%lld",&n,&k))
      {
            cout<<qurey(n,k)<<endl;
      }
      return 0;
}
for( i=a;i>1;i--)
      {
            ll e=k/(i-1);
            ll s=k/i;//k=100,i=4,i-1=3;e=33,s=25;所以100/34=2;100/33=3,100/32=3,100/31=3,100/30=3
            if(s>n) //100/29=3,100/28=3,100/27=3,100/26=3;100/25=4;100 % 26 = 22,100 % 27 = 19,100 % 28 = 16,100 % 29 = 13
            {      //100%30=10,~100%33=3;所以第一项是k%(k/i+1),最后一项k%(k/(i-1))
                  break;
            }
            if(e>n)//模数最大为n;
            {
                  e=n;
            }
            sum+=(k%(s+1)+k%e)*(e-s)/2;//根据等差公式求和(首项加末项)乘以项除以2;
      }

知道商是个定值i,可以找出为一系列数(k/i)使得K / 数等于这个商,找出(商+1)(i-1)的一系列数的的一个(k/(i-1))。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值