数据结构:二叉树

目录

1.树

1.1树的概念与结构

1.2树相关术语

1.3树的表示

1.4树形结构实际运用场景

2.二叉树

2.1概念与结构

2.2特殊的二叉树

2.2.1满二叉树

2.2.2完全二叉树

2.3二叉树的存储结构

2.3.1顺序结构

2.3.2链式结构

3.实现顺序结构二叉树

3.1堆的概念与结构

3.2堆的实现

3.2.1堆底层结构为数组,因此定义堆的结构为:

 3.2.2初始化堆

 3.2.3堆的销毁

3.2.4堆的插入

3.2.5堆的删除

3.2.5堆的判空


1.树

1.1树的概念与结构

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一颗倒挂着的树,也就是说它是根朝上,而叶朝下的。

有一个特殊的结点,称为根结点,根节点没有前驱结点。

除根结点外,其余结点被分成M(M>0)个互不相交的集合T1,T2,.....,Tm,其中每一个集合Ti(1<=i<=m)又是一棵结构与树类似的子树。,每颗子树的根结点有且只有一个前驱,可以有0个或多个后继。因此,树是递归定义的。

 树形结构中,子树之间不能有交集,否则就不是树形结构

非树形结构:

子树是不相交的(如果存在相交那就是图了) 

除了根结点外,每个结点有且只有一个父结点。

一颗N个结点的树有N-1条边 。

1.2树相关术语

父结点/双亲结点:若一个结点有子结点,则这个结点称为其子结点的父结点;如上图:A是B的父结点

子节点/孩子结点:一个结点含有的子树的根结点称为该结点的子结点;如图:B是A的孩子结点

结点的度:一个结点有几个孩子,他的度就是多少;比如A的度为6,F的度为2,K的度为0

树的度:一棵树中,最大的结点的度称为树的度;如上图:树的度为6

叶子结点/终端结点:度为0的结点称为叶结点;如上图: B、C、H、I......等结点为叶结点

分支结点/非终端结点:度不为0的结点;如上图:D、E、F、G、....等为分支结点

兄弟结点:具有相同父结点的结点互称为兄弟结点

结点的层次:从根定义起,根为第一层,根的子结点为第二层,以此类推。

树的高度或深度:树中结点的最大层次:如上图:书的高度为4

结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先

路径:一条从树中任意结点出发,沿父结点-子结点链接,达到任意结点的序列;比如A到Q的路径为:A-E-J-Q;H到Q的路径H-D-A-E-J-Q

子孙:以某结点为根的子树中任一结点都称为该节点的子孙。如上图:所有结点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林。

1.3树的表示

孩子兄弟表示法:

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦,既要保存值域,也要保存结点和结点之间的关系,实际树有很多表示方式如:双亲表示法,孩子表示法,孩子双亲表示法以及孩子兄弟表示法等。

struct TreeNode
{
	struct Node* child;
	struct Node* brother;
	int data;
};

1.4树形结构实际运用场景

文件系统是计算机存储和管理文件的一种方式,它利用树形结构来组织和管理文件和文件夹。在文件系统中,树结构被广泛应用,它通过父结点和子结点之间的关系来表示不同层级的文件 和文件夹之间的关联。

2.二叉树

2.1概念与结构

在树形结构中,我们最常用的就是二叉树,一棵二叉树是结点的有限集合,该集合由一个根结点加上两颗别称为左子树和右子树的二叉树组成或者为空。

二叉树具备以下特点:

1.二叉树不存在度大于2的结点

2.二叉树的子树有左右之分,次序不能颠倒,因此二叉树手是有序树

注意:对于任意二叉树都是由以下几种情况复合而成的

2.2特殊的二叉树

2.2.1满二叉树

一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为k,且结点总数是二的k次方减一。则它就是满二叉树。

2.2.2完全二叉树

完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称为完全二叉树,要注意的是满二叉树         是一种特殊的完全二叉树。

二叉树性质 

根据满二叉树的特点可知:

1.若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点.

2.若规定根结点的层数为1,则深度为h的二叉树的最大结点数是2^(h-1)

3.若规定根结点的层数为1,具有n个结点的满二叉树的深度h=log2(n+1)

2.3二叉树的存储结构

2.3.1顺序结构

顺序结构存储 就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费,完全二叉树更适合使用顺序结构存储。

 现实中我没通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事

2.3.2链式结构

⼆叉树的链式存储结构是指,⽤链表来表⽰⼀棵⼆叉树,即⽤链来指⽰元素的逻辑关系。 通常的⽅法 是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别⽤来给出该结点左孩⼦和右孩 ⼦所在的链结点的存储地址 。链式结构⼜分为⼆叉链和三叉链,当前我们学习中⼀般都是⼆叉链。后面课程学到⾼阶数据结构如红⿊树等会⽤到三叉链。

3.实现顺序结构二叉树

一般堆使用顺序结构的数组来存储数据,堆是一种特殊的二叉树,具有二叉树的特性的同时,还具备其他的特性。

3.1堆的概念与结构

如果有⼀个关键码的集合 ,把它的所有元素按完全⼆叉树的顺序存储⽅
式存储,在⼀个⼀维数组中,并满⾜: ( 且 ),
i = 0 1 2... ,则称为⼩堆(或⼤堆)。将根结点最⼤的堆叫做最⼤堆或⼤根堆,根结点最⼩的堆
叫做最⼩堆或⼩根堆。

堆中某个结点的值总是不大于或小于其父节点的值;

堆中是一颗完全二叉树

⼆叉树性质
对于具有 n 个结点的完全⼆叉树,如果按照从上⾄下从左⾄右的数组顺序对所有结点从
0 开始编号,则对于序号为 i 的结点有:
1. i>0 i 位置结点的双亲序号: (i-1)/2 i=0 i 为根结点编号,⽆双亲结点
2. 2i+1<n ,左孩⼦序号: 2i+1 2i+1>=n 否则⽆左孩⼦
3. 2i+2<n ,右孩⼦序号: 2i+2 2i+2>=n 否则⽆右孩⼦

 

3.2堆的实现

#pragma once
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
#include<time.h>
//创建堆结构
typedef int HPDataType;
typedef struct Heap
{
	HPDataType* arr;
	int size;
	int capacity;
}HP;

//初始化
void HPInite(HP* php);

//销毁
void HPDestroy(HP* php);

// 堆的插入
void HeapPush(HP* php, HPDataType x);

//堆的删除
void HeapPop(HP* php);

//判空
bool HPEmpty(HP* php);

//取堆顶的数据
HPDataType HPTop(HP* php);

//求size
int HPsize(HP* php);


void Swap(int* x, int* y);
//向下调整
void Adjustdown(HPDataType* arr, int parent, int n);
//向上调整数据
void Adjustup(HPDataType* arr, int child);




3.2.1堆底层结构为数组,因此定义堆的结构为:

//创建堆结构
typedef int HPDataType;
typedef struct Heap
{
	HPDataType* arr;
	int size;
	int capacity;
}HP;

 3.2.2初始化堆

void HPInite(HP* php)
{
	assert(php);
	php->arr = NULL;
	php->capacity = php->size = 0;
}

 3.2.3堆的销毁

和顺序表的销毁一样

//销毁
void HPDestroy(HP* php)
{
	assert(php);
	if (php->arr)
		free(php->arr);


	php->arr = NULL;
	php->size = php->capacity = 0;
}

3.2.4堆的插入

首先,我没需要判断一下空间够不够,空间不足的话我们需要手动开辟空间,和顺序表的方法一样将数据插到最后一个结点的位置,然后我们需要向上调整,我们现在创建的是小堆要遵循父节点比孩子节点小的原则,因此,我们要求插入的这个结点的父节点如果比父节点小则需交换位置,,然后再看新的位置的父节点的数据,如果还是比父节点小则又要交换位置直到找到整个堆的堆顶为止


//交换数据
void Swap(int* x, int* y)
{
	int tmp = *x;
	*x = *y;
	*y = tmp;
}
//向上调整数据
void Adjustup(HPDataType* arr, int child)
{
	int parent = (child - 1) / 2;
	//建大堆,孩子比父亲大就交换,用>
	//建小堆,孩子比父亲小就交换,用<
	while (child > 0)//不需要等于,child只要走到根节点的位置,根节点没有父节点不需要交换
	{
		if (arr[child] > arr[parent])
		{
			Swap(&arr[parent], &arr[child]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}

}
// 堆的插入
void HeapPush(HP* php, HPDataType x)
{
	assert(php);
	//判断空间是否足够
	if (php->size == php->capacity)
	{
		//扩容
		int newCapacity = php->capacity == 0 ? 4 : 2 * php->capacity;
		HPDataType* tmp = (HPDataType*)realloc(php->arr, newCapacity * sizeof(HPDataType));
		if (tmp == NULL)
		{
			perror("realloc fail!");
			exit(1);
		}
		php->arr = tmp;
		php->capacity = newCapacity;
	}
	php->arr[php->size] = x;

	Adjustup(php->arr, php->size);

	++php->size;
}

 

3.2.5堆的删除

堆的删除我们一般叫做出堆,也就是把堆顶的数据删除,但是如果直接就这样删的话就没有堆顶了,那是不行的,因此我们需要先将堆顶和最后一个数据交换然后size-1,为了堆的规定,我们需要向下调整,此时我们需要找到新的堆顶的孩子结点,由于有左孩子和右孩子因此我们需要比较选择最小的那个作为交换的孩子结点,此时,如果栈顶的结点比孩子结点大则需要交换为止,直到叶子结点为止。

//向下调整
void Adjustdown(HPDataType* arr, int parent, int n)
{
	int child = parent * 2 + 1;//左孩子
	while (child < n)
	{
		//小堆,找孩子里面最小的
		//大堆,找孩子里面最大的
		if (child + 1 < n && arr[child] < arr[child + 1])
		{
			child++;
		}
		if (arr[child] > arr[parent])
		{
			Swap(&arr[child], &arr[parent]);
			parent = child;
			child = parent * 2 + 1;

		}
		else
		{
			break;
		}
	}
}
//堆的删除
void HeapPop(HP* php)
{
	assert(php && php->size);
   //arr[0]  arr[size-1]
	Swap(&php->arr[0], &php->arr[php->size - 1]);

	--php->size;

	Adjustdown(php->arr, 0, php->size);

}

 

3.2.5堆的判空

我们直接返回size==0就好

//取堆顶的数据
HPDataType HPTop(HP* php)
{
	assert(php&&php->size);
	return php->arr[0];
}

  • 32
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值