- 博客(657)
- 资源 (2)
- 收藏
- 关注
原创 【WSL被Killed终极指南】WSL运行代码被Killed?教你一步步排查 + 解决方案
在使用 WSL(Windows Subsystem for Linux)运行 AI 相关代码或数据处理脚本时,程序可能会突然中断并显示“Killed”。这通常是由于程序占用了过多内存,触发了 WSL 的 OOM(Out Of Memory)机制。本文提供了详细的排查和解决方案,包括通过 free -h 或 htop 监控内存使用情况,以及通过修改 .wslconfig 文件扩展 WSL2 的可用内存。此外,还提供了代码层面的优化建议,如使用数据生成器、减小 batch size 等。通过这些方法,可以有效避
2025-05-15 21:19:35
429
原创 在 WSL 中用 kagglehub 下载数据后找不到文件?一招教你定位+剪切到当前目录!
在日常使用深度学习数据集时,我们经常通过像 `kagglehub` 这样的工具快速下载数据。但当我们在 **Windows 系统中使用 WSL(Windows Subsystem for Linux)** 运行 Python 脚本时,可能会遇到以下典型问题:> ✔ 我用 `kagglehub.dataset_download(...)` 成功下载了一个数据集,比如 Food-101,但> ❌ 我在文件管理器中 **搜索不到** “food-101” 或者 “dansbecker” 的文件夹,
2025-05-12 16:21:26
632
原创 对数在深度学习中的三个超重要作用(含代码示例)
| 连乘变连加 | $\log(ab) = \log a + \log b$ | 提高数值稳定性(如概率乘积) || 指数拉下来 | $\log(e^x) = x$ | 简化导数计算,稳定梯度传播 || 缩放可视化范围 | `plt.yscale('log')` | loss/梯度大范围可视化,清晰展示变化 |
2025-05-08 20:52:00
703
原创 在Windows中畅享Linux体验:WSL安装与配置全攻略
双系统指的是在同一台电脑上安装两个操作系统(比如Windows和Ubuntu),开机时可以选择进入哪一个系统。这样你就可以在Linux下跑模型,在Windows下处理日常任务。每次切换系统都需要重启;文件共享不太方便;驱动配置、引导修复比较麻烦;一旦误操作,容易造成整个系统崩溃;游戏、娱乐软件基本只能在Windows下运行,Linux下功能受限。WSL,全称,是微软官方推出的一项技术,让你可以在Windows中运行完整的Linux环境。
2025-04-25 11:19:09
969
原创 从零开始搭建你的个人博客:使用 GitHub Pages 免费部署静态网站
在互联网时代,拥有一个属于自己的网站不仅是一种展示方式,更是一种技术能力的体现。今天我们将一步步学习如何通过 GitHub Pages 搭建一个免费的个人博客或简历网站。
2025-04-22 16:09:43
2449
原创 解放生产力!智谱GLM免费Batch API处理10万+专利数据实战【附完整代码及流程】
在处理大规模中文专利文本时,实体识别(Named Entity Recognition, NER),特别是对自然人姓名和组织名称的准确提取,是一项关键任务。然而,传统的规则匹配方法(如基于正则表达式或关键词)在中文环境中表现非常有限:因此,这类任务非常适合交由 大语言模型(LLM) 来完成,尤其是具备强大语言理解与信息抽取能力的新一代中文大模型。我们的目标是从专利文本的以下字段中,批量提取出自然人姓名与组织机构名称,并将其结构化为标准格式:面对庞大的文本数据规模,传统逐条处理方法效率低、成本高。为此,我们采
2025-04-16 17:05:20
663
原创 如何让智谱清言 API 一次性返回完整回答?避免逐字输出的正确用法
智谱清言 API 是一个强大的 AI 语言模型接口,支持对话生成、搜索增强等功能。本文将重点讲解如何,避免逐字返回的问题,并提供代码示例与常见错误解决方案。
2025-03-25 11:00:28
846
原创 如何在 Linux 中递归解压所有子目录下的 `.tar.gz` 文件
通过结合find和tar命令,可以高效处理分散在多个目录中的压缩文件。使用-execdir在文件所在目录解压,避免路径混乱。通过预检查命令降低误操作风险。根据需求选择是否保留原文件或显示进度。对于批量运维任务,建议将核心命令封装成脚本,并结合日志记录功能(如tee)实现可追溯性。
2025-03-21 10:46:41
873
原创 为什么临界区是代码而不是数据?深入理解并发控制的核心概念
概念角色关键点共享数据被操作的对象(被动)需要保护,但无法自我管理并发临界区操作行为的集合(主动)通过控制代码执行顺序,间接保护数据一致性锁/信号量协调代码执行的工具绑定的是代码逻辑,而非数据本身注互斥锁(Mutex)用于保护临界区,而信号量(Semaphore)还可用于线程间协作(如生产者-消费者问题)。
2025-03-20 19:41:01
970
原创 从网络层到应用层:为什么防火墙必须分层?
很多人可能会选 D,认为防火墙一定包含“配置”和“监控”,但实际上,这些属于管理功能,而非核心的安全防护能力。通过具体场景和技术细节的拆解,可以清晰理解防火墙如何通过分层机制实现从“简单流量控制”到“智能威胁防御”的演进。• 限制单个IP的连接速率,防止CC攻击(Challenge Collapsar)。• 记录内部发起的TCP连接(源IP+端口、目标IP+端口、协议)。• 仅开放80(HTTP)、443(HTTPS)端口,关闭其他端口。通常是内部保留地址,若外部流量伪装此IP,可能为IP欺骗攻击。
2025-03-20 18:52:42
912
原创 作业调度算法终极对比:FCFS vs RR vs HRRN,谁才是平衡效率与公平的最佳选择?
通过选择响应比更高的作业(C 优先于 B),HRRN 减少了短作业的等待时间,使平均等待时间(2.67 秒)低于 FCFS(3.33 秒)。:2~4(首次执行),7~9(第二次执行),10~11(完成)。:在 RR 中,作业被多次中断并重新排队,每次中断后需等待其他作业运行,导致总等待时间增加。到达时间 1,开始执行时间 3,等待时间 = 3 - 1 = 2 秒。到达时间 1,开始执行时间 7,等待时间 = 7 - 1 = 6 秒。:0~2(首次执行),6~7(完成)。总执行时间3秒,完成时间7秒。
2025-03-19 08:00:00
975
原创 后退N帧协议难题解析:收到ACK 0、2、3时,为何必须重传4帧?
的可靠数据传输协议,属于**自动重传请求(ARQ, Automatic Repeat reQuest)**机制的一种。: 发送方可能减少重传量,但需修改协议逻辑(如增加逐个 ACK),此时协议退化为 SR。: 接收方发送 ACK 4 表示 0~4 已确认,ACK 6、7 无效(非累积确认)。,发送方已发送帧 0~9,收到 ACK 4、6、7。:若 GBN 接收方改为缓存非按序帧(类似 SR),会发生什么?最早未确认帧是 5,需重传 5~9,共 5 帧。GBN(后退 N 帧协议)是一种。
2025-03-18 15:13:12
1154
原创 揭秘数据不一致的罪魁祸首:完整性控制缺失与冗余数据的较量
数据不一致可能会导致系统故障、数据丢失或业务错误,因此确保数据一致性至关重要。,因为即使有数据冗余,如果完整性约束管理得当,也不会产生不一致问题。通过以上方法,我们可以有效防止数据不一致,提高系统的稳定性和可靠性。我们逐一分析四个选项,看它们是否是导致数据不一致的根本原因。,导致不同用户或系统看到的结果不同。
2025-03-18 15:07:09
1371
原创 图的广度优先搜索(BFS)与树的遍历方式对比
在计算机科学中,图和树是常见的数据结构,而它们的遍历方式也是算法学习的重要内容。,从起始节点开始,先访问所有相邻的节点,然后依次访问下一层的节点。的方式,一条路径走到尽头后,回溯再尝试新的路径。,保证每层节点按顺序访问。,保证尽可能深入遍历。
2025-03-18 14:43:25
415
原创 线性回归中的最小二乘法:直接法与梯度下降的比较
最小二乘法(Least Squares Method)是一种用于数据拟合的方法,它的核心思想是“最小化误差的平方和”。假设我们有一组数据点,并希望找到一条最优的直线或曲线来尽可能贴合这些点。由于数据通常存在噪声或者误差,无法完美拟合所有点,因此最小二乘法的目标是找到一个最佳拟合,使得所有点到拟合曲线的垂直距离的平方和最小。通俗地说,就像是在一堆散落的数据点中找一根“最合理”的线,使得数据点到这条线的总体偏差最小。
2025-03-13 19:29:37
955
1
原创 SGD 为什么叫“随机”梯度下降?深入剖析其真正含义!【代码实战】
在实际应用中,SGD 的随机性不仅加快了训练速度,还能帮助模型跳出局部最优,使其成为深度学习优化的核心方法之一。:当数据集很大时,每次计算完整梯度的成本很高,训练速度非常慢,尤其是在深度学习任务中。你会发现,由于 SGD 每次更新都基于随机样本,最终拟合出的参数会有细微差异,这就是。这篇博客将深入剖析这个问题,并解释 SGD 相对于传统梯度下降方法的核心区别。由于 SGD 仅基于单个样本进行更新,因此梯度的方向会有较大的。,从而显著降低计算开销,提高训练速度。,避免数据的固定顺序影响模型的收敛。
2025-03-13 19:07:29
1301
原创 深入解析 TCP 协议【真题】
> **关于传输控制协议(TCP)表述不正确的是?** > **A. 主机寻址** > **B. 进程寻址** > **C. 流量控制** > **D. 差错控制**
2025-03-11 15:34:46
885
原创 SSH 代理与私钥持久化:让你的开发环境不再因重启而中断
在使用 Git、远程服务器或其他依赖 SSH 认证的工具时,私钥是身份验证的核心。这通常意味着 SSH 客户端无法找到对应的私钥文件,即使本地已正确配置文件。其根本原因在于 SSH 代理 (ssh-agent) 重启后未能自动加载私钥。本文将从原理出发,讲解如何自动持久化 SSH 代理及其私钥,以避免每次服务器重启后手动执行ssh-add。
2025-02-13 16:34:01
828
原创 从 Ubuntu 到 Windows:如何在不同系统间共享 Git SSH 配置
通过以上步骤,你可以在 Windows 系统上成功配置 SSH 密钥,使得 Git 操作时无需每次输入用户名和密码。将 Ubuntu 系统中的私钥文件复制到 Windows 系统。更新 Windows 上的 SSH 配置文件,确保 Git 使用正确的私钥进行身份验证。验证 SSH 配置是否生效,确保能够成功通过 SSH 连接远程仓库。修改 Git 仓库的远程 URL 为 SSH 协议,确保后续操作通过 SSH 进行。
2025-01-21 09:58:22
1074
原创 提升开发效率:Bash 脚本自动化环境搭建与依赖安装
安装 Miniconda 并初始化 Conda 环境。配置国内镜像源以加速包下载。安装 Python 依赖及 Node.js 和 npm。安装前端依赖。通过这个自动化脚本,你不仅能够快速搭建 Python 开发环境,还能确保每次环境的搭建都一致并且高效。对于没有管理员权限的用户来说,这种方法尤其有用,因为它通过 Conda 安装依赖,避免了使用sudo的需要。希望这篇文章对你有所帮助,提升了你的开发效率!
2025-01-20 16:24:42
1137
原创 设置 Git 默认推送不需要输入账号和密码【Ubuntu、SSH】
在使用Git管理代码时,许多开发者会遇到每次推送(push)或拉取(fetch)代码时都需要输入GitHub或GitLab等远程仓库的账号和密码的情况。虽然设置了用户名和电子邮件信息以确保提交时的身份正确,但这并不能解决每次操作时仍然需要输入密码的问题。这些配置确保了Git提交时的身份信息正确,但它们并不能避免每次与远程仓库交互时重复输入密码的麻烦。因此,为了提升工作效率并简化操作,许多开发者选择配置SSH密钥,从而免去每次推送代码时输入账号和密码的烦恼。
2025-01-17 17:33:12
2509
原创 机器学习模型评估:从混淆矩阵到 ROC 曲线
在某些任务中,你需要更高的查准率(如垃圾邮件分类,不希望误判重要邮件);而在另一些任务中,你需要更高的查全率(如疾病筛查,不希望漏掉任何患者)。通过分析混淆矩阵,我们可以进一步计算出模型的重要评估指标,例如查准率(Precision)、查全率(Recall)、F1 分数等。最后,通过案例的计算,我们验证了这些评估指标的意义和应用。在分类任务中,模型的预测可能是正确的(即与实际情况一致)或错误的(即与实际情况不一致)。,我们可以全面评估模型的性能。在分类任务中,不同的预测阈值会影响模型性能。
2025-01-02 18:16:31
1078
原创 深入线性模型:从目标函数到偏导数与闭式解全解析
通过这篇复习博客,你将系统地掌握线性模型的目标函数、如何通过偏导数进行优化,以及闭式解的推导和求解方法。线性模型是一类简单而强大的模型,用于解决回归和分类问题。在回归问题中,线性模型的核心思想是通过一组线性函数来拟合数据。线性模型的理论基础清晰且简单,但其推导过程是机器学习中许多复杂模型的基础,建议多加练习以熟悉细节。梯度下降法是一种迭代优化算法,依靠目标函数的梯度(偏导数)来更新参数。在推导中,我们会使用矩阵运算来简化线性回归目标函数的表达式。的偏导数,并利用梯度下降法更新参数。我们的目标是找到最优的。
2025-01-02 00:11:53
904
原创 「从多视角图像到高精度三维重建:基于COLMAP的全流程解析与结果分析」
本次任务的目标是基于 **COLMAP** 工具对给定的多视角图像进行三维点云重建,并计算每张图像的相机位姿,最终完成实验记录与结果分析。
2024-12-30 01:43:47
1355
原创 COLMAP 安装与三维点云重建全流程详解:从安装配置到模型查看
COLMAP 是一个功能强大的开源三维重建工具,它支持自动化的多视角几何重建,包括特征提取、相机位姿估计、稀疏点云重建、稠密点云生成等核心功能。无论是学术研究还是工程应用,COLMAP 都是不可或缺的三维重建利器。在本篇博客中,我们将详细介绍如何下载并安装 COLMAP,并将其配置到系统环境中,确保其可以正常运行。同时我们还会展示如何准备数据目录结构,为后续使用 COLMAP 进行三维点云重建做准备。为了方便在命令行中直接调用 COLMAP,我们需要将其。,选择稀疏重建的模型文件夹。
2024-12-29 01:19:50
4658
3
原创 FFmpeg:详细安装教程与环境配置指南
在后续教程中,我们将结合 FFmpeg 和 COLMAP,实现多视角图像的三维点云重建。在本篇博客中,我们将详细介绍如何下载并安装 FFmpeg,并将其添加到系统的环境变量中,以便在终端或命令行工具中直接调用。在本教程中,我们需要使用 FFmpeg 将视频文件转换为图像序列(抽帧),为后续使用 COLMAP 进行三维点云重建提供多视角图像。为了在终端或命令行中方便地调用 FFmpeg,我们需要将其添加到系统环境变量中。完成 FFmpeg 的安装后,我们可以通过它进行一些常见操作,例如从视频中抽取图像帧。
2024-12-29 00:23:30
6897
原创 Anaconda 安装与虚拟环境创建完整指南
Anaconda 是目前最流行的 Python 和数据科学工具集之一,它不仅可以轻松管理 Python 包,还能提供强大的虚拟环境功能,避免项目之间的依赖冲突。完成 Anaconda 安装后,接下来我们创建一个独立的虚拟环境来安装开发所需的工具(例如 Python、COLMAP、FFmpeg 等)。在这篇博客中,我们将从零开始,详细介绍如何下载、安装 Anaconda,并创建虚拟环境,帮助你快速搭建开发环境。通过本文的指南,你已经学会了如何下载并安装 Anaconda,并创建独立的虚拟环境。
2024-12-29 00:06:16
7308
原创 切尔诺夫界:概率界限的精确利器
在概率论中,是一种强大的工具,它通过引入,能够为随机变量的大偏差概率提供更加精确的界限。相比于马尔科夫不等式和切比雪夫不等式,切尔诺夫界不仅利用了随机变量的分布信息,而且通过优化参数化的过程,显著收紧了界限,尤其在独立随机变量的场景下表现卓越。
2024-12-06 11:19:01
1773
原创 切比雪夫不等式:方差约束下的概率估计
在概率分析中,是一个常用的工具,它通过引入随机变量的,给出了偏离均值的概率界限。这一不等式是对的自然扩展,结合了更丰富的分布信息。通过它,我们可以更精确地描述随机变量的偏差行为。
2024-12-06 10:56:50
1479
原创 马尔科夫不等式扩展:非线性函数下的概率上界
马尔科夫不等式的扩展形式为我们提供了一种研究非线性变换后随机变量行为的工具。这种扩展形式非常灵活,适用于许多场景,比如分析平方、指数等变换后的随机变量。然而,与原始形式一样,这种方法提供的概率上界通常较宽松,因此常作为第一步的粗略估计。
2024-12-05 16:14:47
1161
原创 马尔科夫不等式:一个快速的概率上界工具
马尔科夫不等式是浓度不等式中最基础的一条。它的核心作用是:给一个非负随机变量的大偏差概率提供一个简单易用的上界。尽管它很“粗糙”,但因为对随机变量的要求很低,具有很广泛的应用场景。
2024-12-05 15:09:00
1361
原创 一文彻底搞懂 SVM:支持向量机全流程解析与数学推导
支持向量机(SVM)是机器学习中经典的二分类模型,它通过找到一个最优的超平面,最大化正负样本的分类间隔,实现对数据的有效分类。本篇博客将从问题定义开始,逐步推导 SVM 的完整数学过程,包括优化目标、拉格朗日对偶理论、KKT 条件的应用和最终决策函数的构造。推导过程力求数学完备,同时以通俗语言讲解每一步推导背后的逻辑。
2024-11-26 10:49:05
3252
1
原创 推荐系统中的矩阵分解:从原理剖析到实例的全面讲解【经典推荐方法】
矩阵分解是推荐系统中的经典方法,它通过分解用户-物品评分矩阵,提取用户和物品的潜在特征,从而实现评分预测和个性化推荐。通过优化损失函数,我们能够学习到用户和物品的低维表示,这种技术在现代推荐系统中被广泛使用,同时也为更复杂的深度学习推荐模型奠定了基础。
2024-11-20 16:23:07
942
原创 初学者指南:知识库问答(KBQA)多跳路径的核心与应用
知识库问答(Knowledge Base Question Answering, KBQA)旨在利用结构化知识库(如Wikidata、Freebase)回答自然语言问题。在实际应用中,回答一个问题往往需要多步推理,这种推理过程被称为 **多跳路径** 。本文将从基础概念、关键技术、挑战及应对策略等角度全面解析KBQA中的多跳路径任务,帮助初学者快速理解这一核心问题。
2024-11-18 16:10:06
1127
原创 双指针优化解法:原地操作,最少步骤移动零
通过交换非零元素和零元素来完成重新排列。这样,零元素会自动被推到数组末尾。要完成这个任务,可以有多种解法。移动到数组的末尾,同时保持非零元素的相对顺序。为了优化,我们还需要尽量减少操作次数。为例,逐步观察每次操作的状态变化。为例,用表格展示每一步的状态变化。
2024-11-18 10:39:52
961
原创 用哈希表打造极简算法!教你用‘找起点’技巧拿下最长连续序列
找起点:只从序列的起点开始计算,可以避免重复计算,提升效率。利用哈希集合:通过哈希集合快速查找元素是否存在,保证 O(n) 的时间复杂度。线性扫描:遍历每个元素,判断是否为序列的起点并计算长度,确保只访问每个元素一次。
2024-11-13 10:22:51
686
原创 哈希表巧解字母异位词分组:从思路到实现的全方位讲解
字符串排序法:通过对每个字符串排序,使字母异位词具有相同的排序结果,从而可以分组。这种方法简单直接,适合普通情况。字符频次法:通过统计字符出现频率,将频率数组作为特征,用于分组。该方法避免了排序,适合字符串较长的情况。这两种方法可以根据实际情况选择使用。理解这两种方法的不同特征,可以帮助我们更好地解决字母异位词分组的问题。
2024-11-12 19:19:27
1035
原创 从 O(n²) 到 O(n):单调栈在算法中的妙用
通过以上分析,我们掌握了使用单调栈的方法来解决“寻找下一个更高温度”的问题。单调栈不仅适用于温度问题,还广泛应用于“寻找下一个更大/更小元素”一类的题目中,值得深入理解和掌握。在实际工程中,这种方法在数据处理、优化算法性能等方面也有着重要的应用。
2024-11-08 10:04:04
995
原创 立体视觉的核心技术:视差计算与图像校正详解
如图所示,双目视觉系统由左相机(光心OlO_lOl)和右相机(光心OrO_rOr)构成,两者之间的距离为基线BBB。设待测物体在三维空间中的真实坐标为PXYZP(X, Y, Z)PXYZ,其在左、右相机图像平面上的投影点分别为plxlylplxlyl和prxryrprxryr。视差(Disparity)表示物体在左右图像平面上的水平位置差异,用dxdxdxdxxl−xr。
2024-11-07 20:40:11
3747
1
原创 云端到本地:深度学习日志与模型文件一键传输【详解 SCP 命令】
在深度学习项目中,模型的训练通常会在远程云服务器上进行。此过程会生成大量日志文件和模型文件(如检查点文件、模型权重等),这些文件对于后续的分析、调试和备份至关重要。本文将介绍如何使用scp命令,将云服务器上的文件夹下载到本地 Windows 系统,以便于进一步分析和备份。
2024-11-07 16:25:30
938
FFmpeg 安装包-ffmpeg-git-essentials.7z
2024-12-29
Android 开发技巧:音乐播放器的后台处理【Service、Handler、MediaPlayer】完整代码
2023-10-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人