【Tyvj】第k极值


描述 Description
 
  给定一个长度为N(0<n<=10000)的序列,保证每一个序列中的数字a[i]是小于maxlongint的非负整数 ,编程要求求出整个序列中第k大的数字减去第k小的数字的值m,并判断m是否为质数。(0<k<=n)
     
     
  输入格式 Input Format  
  输入格式:
第一行为2个数n,k(含义如上题)
第二行为n个数,表示这个序列
     
     
  输出格式 Output Format  
  输出格式:
如果m为质数则
第一行为'YES'(没有引号)
第二行为这个数m
否则 
第一行为'NO'
第二行为这个数m

Sample Input

5 2
1 2 3 4 5

Sample Output

YES
2



时间限制 Time Limitation
 
  各个测试点1s
数据范围
20%数据满足0<n<=10
50%数据满足0<n<=5000
100%数据满足0<n<=10000

a[i]<=maxlongint
     
     
  注释 Hint  
  对于第K大的详细解释:
如果一个序列为1 2 2 2 2 3
第1大 为3
第2大 为2
第3大 为2
第4大 为2
第5大 为1
第K小与上例相反

另外需要注意的是
最小的质数是2,如果小于2的话,请直接输出NO
最需要注意的是,最小的质数是2,如果小于2的话,直接输出NO

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstdlib>

using namespace std;

int  n,k,s[10000];

int judge(int x)
{
    if (x<2) return 2;
    if (x==2) return 5;
    for (int i=2;i<=sqrt(x);++i)
    {
        if (x%i==0)
        {
              return  2;
        }
    }
    return 5;
}
  


int main()
{
    freopen("第K极值.in","r",stdin);
    freopen("第K极值.out","w",stdout);
    scanf("%d %d\n",&n,&k);
    for (int i=1;i<=n;++i)
    {
        scanf("%d",&s[i]); 
    }
    sort(s+1,s+n+1);
    int ans=s[n-k+1]-s[k];
    if (judge(ans)==5)
    {cout<<"YES"<<endl;}
    else cout<<"NO"<<endl;
    printf("%d",ans);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值