深度学习#Datawhale暑期AI夏令营

局部极小值与鞍点概念

  • 局部极小值:损失函数中梯度为零的点,且在该点附近所有方向上的损失都高于该点。
  • 鞍点:梯度为零的点,但不是局部极小值或局部极大值,某些方向上损失增加,而另一些方向上损失减少。

临界点分析

  • 泰勒级数近似:用于描述损失函数在参数θ′附近的局部形状。 L(θ)≈L(θ′)+(θ−θ′)Tg+12(θ−θ′)TH(θ−θ′)L(θ)≈L(θ′)+(θ−θ′)Tg+21​(θ−θ′)TH(θ−θ′)
  • 梯度(g):损失函数的一阶微分,指向最陡下降方向。
  • 海森矩阵(H):包含损失函数的二阶微分,用于描述误差表面的曲率。

判断临界点类型

  • 正定矩阵:所有特征值都是正数,表示局部极小值。
  • 负定矩阵:所有特征值都是负数,表示局部极大值。
  • 鞍点:特征值有正有负,表示临界点是鞍点。

逃离鞍点的策略

  • 使用具有动量的优化算法,如SGD with momentum。
  • 应用自适应学习率的优化算法,如Adam。
  • 利用批量归一化技术改变误差表面。

局部极小值的常见性

  • 在高维空间中,局部极小值可能不如鞍点常见。
  • 实验表明,大多数情况下遇到的临界点是鞍点,而不是局部极小值。

实验观察

  • 最小值比例:正特征值数量与总特征值数量的比率。 最小值比例=正特征值数量总特征值数量最小值比例=总特征值数量正特征值数量​
  • 实验数据显示,大多数情况下,最小值比例不高,意味着鞍点比局部极小值更常见。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值