用双向lstm+CRF做命名实体识别(附tensorflow代码)——NER

转自:https://www.lookfor404.com/%E7%94%A8%E5%8F%8C%E5%90%91lstmcrf%E5%81%9A%E5%91%BD%E5%90%8D%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB%E9%99%84tensorflow%E4%BB%A3%E7%A0%81-ner%E7%B3%BB%E5%88%97%EF%BC%88%E5%9B%9B/

 

这一篇文章,主要讲一下用深度学习(神经网络)的方法来做命名实体识别。现在最主流最有效的方法基本上就是lstm+CRF了。其中CRF部分,只是把转移矩阵加进来了而已,而其它特征的提取则是交由神经网络来完成。当然了,特征提取这一部分我们也可以使用CNN,或者加入一些attention机制。

接下来,我将参考国外的一篇博客《Sequence Tagging with Tensorflow》,结合tensorflow的代码,讲一下用双向lstm+CRF做命名实体识别。


1.命名实体识别简述

命名实体识别任务本质上就是序列标注任务。来一个例子:

John  lives in New   York  and works for the European Union
B-PER O     O  B-LOC I-LOC O   O     O   O   B-ORG    I-ORG

在CoNLL2003任务中,实体为LOC,PER,ORG和MISC,分别代表着地名,人名,机构名以及其他实体,其它词语会被标记为O。由于有一些实体(比如New York)由多个词组成,所以我们使用用一种简单的标签体系:

B-来标记实体的开始部分,I-来标记实体的其它部分。

我们最终只是想对句子里面的每一个词,分配一个标签。

2.模型

整个模型的主要组成部分就是RNN。我们将模型的讲解分为以下三个部分:

  1. 词向量表示
  2. 词的上下文信息表示
  3. 解码

2.1 词向量表示

对于每一个单词,我们用词向量w \in \mathbb{R}^n来表示,用来捕获词本身的信息。这个词向量由两部分concat起来,一部分是用GloVe训练出来的词向量w_{glove} \in \mathbb{R}^{d_1},另一部分,是字符级别的向量w_{chars} \in \mathbb{R}^{d_2}

在以往,我们会手工提取并表示一些特征,比如用1,0来表示某个单词是否是大写开头,而在这个模型里面,我们不需要人工提取特征,只需要字符级别上面使用双向LSTM,就可以提取到一些拼写层面的特征了。当然了,CNN或者其他的RNN也可以干类似的事情。

Word level representation from characters embeddings

对于每一个单词w = [c_1, \ldots, c_p]里面的每一个字母(区分大小写),我们用c_i \in \mathbb{R}^{d_3}这个向量来表示,对字母级别的embedding跑一个bi-LSTM,然后将最后的隐状态输出拼接起来(因为是双向,所以有两个最后隐状态,如上图),得到一个固定长度的表达w_{chars} \in \mathbb{R}^{d_2},直觉上,我们可以认为这个向量提取了字母级别的特征,比如大小写、拼写规律等等。然后,我们将这个向量w_{chars}和Glove训练好的w_{glove}拼接起来,得到某个词最终的词向量表达:w = [w_{glove}, w_{chars}] \in \mathbb{R}^n,其中n = d_1 + d_2

看一下tensorflow对应的实现代码。

 

1

2

3

4

5

# shape = (batch size, max length of sentence in batch)

word_ids = tf.placeholder(tf.int32, shape=[None, None])

 

# shape = (batch size)

sequence_lengths = tf.placeholder(tf.int32, shape=[None])

好了,让我们用tensorflow的内置函数来读取word embeddings。假设这个embeddings是一个由GloVe训练出来的numpy数组,那么embeddings[i]表示第i个词的向量表示。

 

1

2

3

L = tf.Variable(embeddings, dtype=tf.float32, trainable=False)

# shape = (batch, sentence, word_vector_size)

pretrained_embeddings = tf.nn.embedding_lookup(L, word_ids)

在这里,应该使用tf.Variable并且参数设置trainable=False,而不是用tf.constant,否则可能会面临内存问题。

好,接下来,让我们来对字母建立向量。

 

1

2

3

4

5

# shape = (batch size, max length of sentence, max length of word)

char_ids = tf.placeholder(tf.int32, shape=[None, None, None])

 

# shape = (batch_size, max_length of sentence)

word_lengths = tf.placeholder(tf.int32, shape=[None, None])

为什么这里用这么多None呢?

其实这取决于我们。在我们的代码实现中,我们的padding是动态的,也就是和batch的最大长度对齐。因此,句子长度和单词长度取决于batch。

好了,继续。在这里,我们没有任何预训练的字母向量,所以我们调用tf.get_variable来初始化它们。我们也要reshape一下四维的tensor,以符合bidirectional_dynamic_rnn的所需要的输入。代码如下:

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

# 1. get character embeddings

K = tf.get_variable(name="char_embeddings", dtype=tf.float32,

    shape=[nchars, dim_char])

# shape = (batch, sentence, word, dim of char embeddings)

char_embeddings = tf.nn.embedding_lookup(K, char_ids)

 

# 2. put the time dimension on axis=1 for dynamic_rnn

s = tf.shape(char_embeddings) # store old shape

# shape = (batch x sentence, word, dim of char embeddings)

char_embeddings = tf.reshape(char_embeddings, shape=[-1, s[-2], s[-1]])

word_lengths = tf.reshape(self.word_lengths, shape=[-1])

 

# 3. bi lstm on chars

cell_fw = tf.contrib.rnn.LSTMCell(char_hidden_size, state_is_tuple=True)

cell_bw = tf.contrib.rnn.LSTMCell(char_hidden_size, state_is_tuple=True)

 

_, ((_, output_fw), (_, output_bw)) = tf.nn.bidirectional_dynamic_rnn(cell_fw,

    cell_bw, char_embeddings, sequence_length=word_lengths,

    dtype=tf.float32)

# shape = (batch x sentence, 2 x char_hidden_size)

output = tf.concat([output_fw, output_bw], axis=-1)

 

# shape = (batch, sentence, 2 x char_hidden_size)

char_rep = tf.reshape(output, shape=[-1, s[1], 2*char_hidden_size])

 

# shape = (batch, sentence, 2 x char_hidden_size + word_vector_size)

word_embeddings = tf.concat([pretrained_embeddings, char_rep], axis=-1)

注意sequence_length这个参数的用法,它让我们可以得到最后一个有效的state,对于无效的time steps,dynamic_rnn直接穿过这个state,返回零向量。

2.2 词的上下文信息表示

当有了词向量w之后,就可以对一个句子里的每一个词跑LSTM或者双向LSTM了,然后得到另一个向量表示:h \in \mathbb{R}^k,如下图:
利用双向LSTM提取上下文信息

对应的tensorflow代码很直观,这次我们用每一个隐藏层的输出,而不是最后一个单元的输出。因此,我们输入一个句子,有m个单词:w_1, \ldots, w_m \in \mathbb{R}^n,得到m个输出:h_1, \ldots, h_m \in \mathbb{R}^k。现在的输出,是包含上下文信息的:

 

1

2

3

4

5

6

7

8

cell_fw = tf.contrib.rnn.LSTMCell(hidden_size)

cell_bw = tf.contrib.rnn.LSTMCell(hidden_size)

 

(output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn(cell_fw,

    cell_bw, word_embeddings, sequence_length=sequence_lengths,

    dtype=tf.float32)

 

context_rep = tf.concat([output_fw, output_bw], axis=-1)

2.3 解码

最后,我们要对每一个词分配一个tag。用一个全连接层就可以搞定。

假如,一共有9种tag,那么我们可以得到权重矩阵W \in \mathbb{R}^{9 \times k}和偏置矩阵b \in \mathbb{R}^9,最后计算某个词的得分向量s \in \mathbb{R}^9 = W \cdot h + b,s[i]可以解释为,某个词标记成第i个tag的得分,tensorflow的实现是这样的:

 

1

2

3

4

5

6

7

8

9

10

W = tf.get_variable("W", shape=[2*self.config.hidden_size, self.config.ntags],

                dtype=tf.float32)

 

b = tf.get_variable("b", shape=[self.config.ntags], dtype=tf.float32,

                initializer=tf.zeros_initializer())

 

ntime_steps = tf.shape(context_rep)[1]

context_rep_flat = tf.reshape(context_rep, [-1, 2*hidden_size])

pred = tf.matmul(context_rep_flat, W) + b

scores = tf.reshape(pred, [-1, ntime_steps, ntags])

在这里,我们用zero_initializer来初始化偏置。

有了分数之后,我们有两种方案用来计算最后的tag:

  • softmax:将得分归一化为概率。
  • 线性CRF:第一种方案softmax,只做了局部的考虑,也就是说,当前词的tag,是不受其它的tag的影响的。而事实上,当前词tag是受相邻词tag的影响的。定义一系列词w_1, \ldots, w_m,一系列的得分向量s_1, \ldots, s_m,还有一系列标签y_1, \ldots, y_m,线性CRF的计算公式是这样的:

 

  \[\begin{aligned}C(y_1, \ldots, y_m) &= b[y_1] &+ \sum_{t=1}^{m} s_t [y_t] &+ \sum_{t=1}^{m-1} T[y_{t}, y_{t+1}] &+ e[y_m]\\&= \text{begin} &+ \text{scores} &+ \text{transitions} &+ \text{end}\end{aligned}\]

 

在上面的式子里,T是转移矩阵,尺寸为\mathbb{R}^{9 \times 9},用来刻画相邻tag的依赖、转移关系;e, b \in \mathbb{R}^9是结束、开始tag的代价向量。下面是一个计算例子:转移得分计算例子

了解了CRF得分式子,接下来要做两件事:

  • 找到得分最高的tag序列。
  • 计算句子的tag概率分布。

“仔细想想,计算量是不是太大了?”

没错,计算量相当大。就上面的例子而言,有9种tag,一个句子有m个单词,一共有9^m种可能,代价太大了。

幸运的是,由于式子有递归的特性,所以我们可以用动态规划的思想来解决这个问题。假设\tilde{s}_{t+1} (y^{t+1})是时间步t+1, \ldots, m的解(每个时间步都是有9种可能的),那么,继续往前推,时间步t, \ldots, m的解,可以由下式表示:

  \[\begin{aligned}\tilde{s}_t(y_t) &= \operatorname{argmax}_{y_t, \ldots, y_m} C(y_t, \ldots, y_m)\\&= \operatorname{argmax}_{y_{t+1}} s_t [y_t] + T[y_{t}, y_{t+1}] + \tilde{s}_{t+1}(y^{t+1})\end{aligned}\]

 

每一个递归步骤的复杂度为O(9 \times 9),由于我们进行了m步,所以总的复杂度是O(9 \times 9 \times m)

最后,我们需要在CRF层应用softmax,将得分概率分布计算出来。我们得计算出所有的可能,如下式子:

 

  \[\begin{aligned}Z = \sum_{y_1, \ldots, y_m} e^{C(y_1, \ldots, y_m)}\end{aligned}\]

 

上面提到的递归思想在这里也可以应用。先定义Z_t(y_t),表示从时间步t开始、以y_t为tag开始的序列,计算公式如下:

 

  \[\begin{aligned}Z_t(y_t) &= \sum_{y_{t+1}} e^{s_t[y_t] + T[y_{t}, y_{t+1}]} \sum_{y_{t+2}, \ldots, y_m} e^{C(y_{t+1}, \ldots, y_m)} \\&= \sum_{y_{t+1}} e^{s_t[y_t] + T[y_{t}, y_{t+1}]} \ Z_{t+1}(y_{t+1})\\\log Z_t(y_t) &= \log \sum_{y_{t+1}} e^{s_t [y_t] + T[y_{t}, y_{t+1}] + \log Z_{t+1}(y_{t+1})}\end{aligned}\]

 

最后,序列概率计算式子如下:

  \[\begin{aligned}\mathbb{P}(y_1, \ldots, y_m) = \frac{e^{C(y_1, \ldots, y_m)}}{Z}\end{aligned}\]

 

2.4 训练

最后,就是训练部分了。训练的损失函数采用的是cross-entropy(交叉熵),计算公式如下:

  \[\begin{aligned}- \log (\mathbb{P}(\tilde{y}))\end{aligned}\]

 

其中,\tilde{y}为正确的标注序列,它的概率\mathbb{P}计算公式如下:

  • CRF:\mathbb{P}(\tilde{y}) = \frac{e^{C(\tilde{y})}}{Z}
  • local softmax:\mathbb{P}(\tilde{y}) = \prod p_t[\tilde{y}^t]

“额..CRF层的损失很难计算吧..?”

没错,但是大神早就帮你做好了。在tensorflow里面,一行就能调用。下面的代码会帮我们计算CRF的loss,同时返回矩阵T,以助我们做预测:

 

1

2

3

4

5

6

7

# shape = (batch, sentence)

labels = tf.placeholder(tf.int32, shape=[None, None], name="labels")

 

log_likelihood, transition_params = tf.contrib.crf.crf_log_likelihood(

scores, labels, sequence_lengths)

 

loss = tf.reduce_mean(-log_likelihood)

local softmax的loss计算过程很经典,但我们需要用tf.sequence_mask将sequence转化为bool向量:

 

1

2

3

4

5

6

7

losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=scores, labels=labels)

# shape = (batch, sentence, nclasses)

mask = tf.sequence_mask(sequence_lengths)

# apply mask

losses = tf.boolean_mask(losses, mask)

 

loss = tf.reduce_mean(losses)

最后,定义train op:

 

1

2

optimizer = tf.train.AdamOptimizer(self.lr)

train_op = optimizer.minimize(self.loss)

2.5 使用模型

最后的预测步骤很直观:

 

1

labels_pred = tf.cast(tf.argmax(self.logits, axis=-1), tf.int32)

至于CRF层,仍然用到上面提到过的动态规划思想。

 

1

2

3

4

# shape = (sentence, nclasses)

score = ...

viterbi_sequence, viterbi_score = tf.contrib.crf.viterbi_decode(

                                score, transition_params)

最终通过这份代码,F1值能跑到90%到91%之间。


3.后记

神经网络做NER,大部分套路都是这样:用基本的RNN、CNN模型做特征提取,最后加上一层CRF,再加点attention机制能稍微提升一下效果,基本上就到瓶颈了。

在2017年6月份,谷歌团队出品这篇论文《Attention Is All You Need》还是给我们带来不少震撼的,不用RNN,CNN,只用attention机制,就刷新了翻译任务的最好效果。所以,我们是不是可以想,把这种结构用到命名实体识别里面呢?

果然,已经有人开始做相关研究。《Deep Semantic Role Labeling with Self-Attention》这篇论文发表于2017年12月,实现了一个类似刚才说到的谷歌的模型,做的是SRL任务,也取得了不错的效果,同时他们也有放出实现代码:https://github.com/XMUNLP/Tagger

值得学习一下。

另外,用多模态来做实体识别也是一个方向,特别是对于一些类似微博的语料(有图片),这样做效果更佳。

代码和语料: 
https://www.lookfor404.com/命名实体识别的语料和代码/

  • 4
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
命名实体识别(Named Entity Recognition,NER)是自然语言处理中的一个重要任务,其目的是从文本中识别出具有特定意义的实体,如人名、地名、组织机构名等。 下面是bilstm+crf模型命名实体识别的流程: 1. 数据预处理:首先需要将文本数据转化为模型能够处理的格式,通常是将每个词转化为对应的向量表示,这可以通过使用预训练的词向量或者自己训练词向量来实现。同时还需要对文本进行标注,标注出每个词是否属于命名实体、属于哪种类型等信息。 2. 模型搭建:使用bilstm+crf模型来进行命名实体识别。其中bilstm是一个双向LSTM网络,它可以同时考虑前后文信息,从而提高模型的准确性。而CRF(Conditional Random Field)则是用来对模型输出的标签序列进行约束,从而提高模型的稳定性和鲁棒性。 3. 模型训练:将预处理好的数据集用于模型训练,通过不断调整模型参数,使得模型在训练集上的表现达到最优。 4. 模型评估:使用测试集来评估模型的性能,通常使用准确率、召回率、F1值等指标来评估模型的效果。 5. 模型应用:将模型应用到实际场景中,对文本进行命名实体识别,得到每个实体的类型和位置信息。 总的来说,使用bilstm+crf模型进行命名实体识别,可以提高模型的准确性和稳定性,适用于各种类型的文本数据,是目前命名实体识别领域的主流方法之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值