双向 LSTM-CRF 实现命名实体识别

本文深入探讨了双向 LSTM-CRF 模型在命名实体识别(NER)中的应用,解释了模型结构、CRF 层的作用、损失函数计算以及如何利用模型预测新数据。通过实例展示了 BiLSTM-CRF 模型如何从句子中识别出人名、机构名等实体,同时介绍了模型训练和评估的过程。
摘要由CSDN通过智能技术生成

今天我们来学习 NER——Named entity recognition,命名实体识别,即识别出文档中具有特定意义的实体,例如人名、地名、机构名、专有名词等。

命名实体识别主要用来提取结构化信息,是信息提取、问答系统、句法分析、机器翻译等应用领域的重要工具。例如,可以用来自动识别简历中的电子邮件、电话号码、学位信息;可以从法律、金融和医疗等领域的文档中提取重要的实体,用于后续的分类和搜索等;用于识别新闻中的人物、机构、地点等标签,进而自动做文档分类;用 NER 来推荐与实体相关的内容,例如当用户浏览了一篇文章后,可以向他推荐具有相似实体的其他文章;还可以用于客服系统,当用户们写评论抱怨产品时,可以自动提取其中的地点、产品等实体信息,然后分配给相应的部门处理等等。

实现 NER 同样也有基于规则的传统方法,机器学习算法,还有深度学习算法,目前 state of art 的模型列表如下图所示:

数据来源

今天我们先来学习最基础的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值