Adlik Bear版本发布啦!

时隔五个月,Adlik新版本又一次和大家见面啦。来看看这次有什么新特性吧!

新编译器Model Compiler 2

  • 支持以各模型表达方式和模型端到端编译的目标,形成DAG图,自动完成图搜索过程,寻找最优的编译路径

    • 源模型文件支持: H5, Ckpt, Pb, Pth, Onnx 以及 SavedModel

    • 目标模型文件支持:: SavedModel, OpenVINO IR, TensorRT Plan 以及 Tflite

  • 集成模型量化特性,在TfLite和TensorRT运行时支持量化模型的推理执行

    • TfLite:支持 int8 量化模型执行

    • TensorRT:支持int8 和fp16 两种量化模型执行

推理引擎Inference Engine

  • 支持机器学习、深度学习推理作业混合调度,是首家同时支持运行机器学习和深度学习的轻量化实时AI推理引擎,已集成在中兴基站产品中,完成了应用测试。

  • 编译器和推理引擎支持以云原生镜像方式,部署到云原生环境,极大程度方便了用户使用Adlik各组件功能

  • 目前在以下云环境完成了部署和功能测试:

    • 原生docker(nvidia dockers)云环境(版本:19.03.12)

    • K8s 云环境(版本:1.13)

  • 支持在树莓派和JetsonNano上运行

  • 支持引擎各组件最新版本:

    • OpenVINO 2021.1.110版本

    • TensorFlow 2.3.1版本

Benchmark Test

  • 支持多种模型在多种Adlik支持的运行时下的性能测试:


    ResNet-50Inception V3Yolo V3Bert
    Tf GPU
    Tf CPU
    TensorRT
    OpenVINO

    TFLite

快去GitHub下载体验吧!任何建议和需求都欢迎砸过来哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Linux基金会AI&Data基金会

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值