0.引言
TVM是一种从端到端的深度学习编译框架,用于优化深度学习模型在CPU、GPU、ARM等任意目标环境下的推理运行速度,相对于TensorFlow、MXNet、Caffe 和 PyTorch等深度学习框架有以下优点:
更适合嵌入式场景;
支持客户端-服务器的RPC调用;
能通过优化提升模型的Inference性能;
容易部署,支持多种语言:JS, Java, Python, C++语言;
支持多种模型格式:ONNX,Tensorflow, MXnet模型,DarkNet模型等;
支持多种硬件平台及使用环境上的模型Inference:ARM,FPGA,CPU,nVidia GPU,Mali GPU等。
自然语言处理NLP(Natural Language Processing)是人工智能和语言学领域的分支学科,能够挖掘自然语言文本中蕴含的信息和知识。
这里我们选用TVM框架去进行编译,此次编译的模型为NLP中的BERT模型,任务类型为问答任务。目标是在文本中找出答案的起始位置 (Start,End)。如下图所示,将 Question 和 Paragraph 传入 BERT,然后 BERT 根据 Paragraph 所有单词的输出预测 Start 和 End 的位置。本文主要是验证TVM框架编译BERT模型进行推理的可行性并进一步对其性能进行优化处理。
1. 数据集预处理
这里使用的是SQuAD(The Stanford Question Answering Dataset 1.1 )数据集[3],数据格式如下所示,它整体是一个json格式的数据,"data"中存放的是一个列表,其中存放多个"title"和"paragraphs"组合代表着每一篇文章的元素,每一个"paragraphs"又对应着一个列表,其中包含段落中的一小段描述("context")和若干个问答对("qas"),我们需要从数据集中提取出对应的文本信息、问题以及对应的答案和id信息。预处理部分的代码主要来自于参考文献[2],下面介绍一下数据处理过程以及主要函数的作用,由于代码篇幅较长,本文不贴具体代码,有兴趣的读者可以自行查看。
{
"data": [
{
"title": "Super_Bowl_50",
"paragraphs": [
{
"context": "Super Bowl 50 was an American football game to.....",
"qas": [
{
"answers": [
{
"answer_start": 177,
"text": "Denver Broncos"
}
],
"question": "Which NFL team represented the AFC at Super Bowl 50?",
"id": "56be4db0acb8001400a502ec"
},
...
},
},
{
"title": "Warsaw",
"paragraphs": [...
]
},
{
"title": "Normans",
"paragraphs": [...
]
},
...
首先遍历整个json数据集进行数据读取,在char_to_word_offset中记录每个字符在"context"字段中的索引位置,这样就可以根据"answer_start"字段的字符从char_to_word_offset中得到问题答案在上下文中的起止位置。最后该函数会返回一个如下的二维列表:
doc_tokens:['Super', 'Bowl', '50', 'was', 'an', 'American', 'football', 'game', 'to', 'determine', 'the', 'champion', 'of', 'the', ...]
end_position:29
orig_answer_text:'Denver Broncos'
qas_id:'56be4db0acb8001400a502ec'
question_text:'Which NFL team represented the AFC at Super Bowl 50?'
start_position:28
_improve_answer_span函数对上边的得到的答案的起止位置进行了修正。
然后convert_examples_to_features函数将数据转换为特征值,在处理过程中问题若超过max_query_length则会截断取前半部分,文档若超过max_seq_length则会使用滑窗法,_check_is_max_context函数会计算每个token在每一段滑窗中的最佳位置,其中重点关注的三个特征值如下:
input_ids : tokenizer将tokens映射成的ids数组。
input_mask : 由0,1组成的数组,为了标识是否为补位,如果只有一句话,就用1表示,0用来补位。
segment_ids : 由0,1组成的数组,为了标识是否为同一个segment(比如query的segment_ids为0,answer的segment_ids为1)。
举例如下:
input_ids : [101, 2040, 2003, 1996, 2132, 2873, 1997, 1996, 14169, 1029, 102, 2206, 2037, 3279, ...]
input_mask : [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...]
segment_ids : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, ...]
2. BERT模型
本文使用的模型是pytorch jit类型,固定了BERT模型的banchsize为64,模型的input_shape为[64,384],该模型的输入输出结构如下图:
图中可以看出,BERT模型与一般模型不同,它有三个输入以及两个输出。输入的 input_ids,attention_mask,token_type_ids 分别对应第一节中讲到的特征值 input_ids,input_mask,segment_ids。而输出的 2066 以及 2068 分别对应的是问答任务中答案在上下文中的起始位置和终止位置。
3. TVM推理过程
(1)模型导入
首先利用torch.jit.load 加载 bert.jit 模型,接下来使用 TVM 的 Relay 将 pytorch 模型变成 TVM 可以识别的 Graph IR,TVM 在 Relay 中提供了一个frontend.from_pytorch 用来加载 pytorch 模型并转换为 Relay IR。其中 self.mod 中包含模型中所有输入 Tensor 的 shape 信息, 比如卷积层的 weight 和 bias。self.params 则保存了模型中所有 OP 的权重信息,以字典形式存放, key 是权重 Tensor 的名字。relay.build 构造了 Relay 的计算图, 生成了 self.lib, 然后使用 graph_executor.GraphModule 将 lib 包装在 GraphExecutor 中,创建了一个可以直接从 Python 调用的模块。具体代码如下:
def load_model(self):
"""Load torch model and build module,self.input_shape=[64,384]"""
self.model_path="/model/bert.jit"
self.jit_model = torch.jit.load(self.model_path, map_location="cpu")
shape_list = [
("input_ids", self.input_shape),
("input_mask", self.input_shape),
("segment_ids", self.input_shape),
]
self.mod, self.params = relay.frontend.from_pytorch(self.jit_model, shape_list)
if self.transform:
self._pre_process()
with tvm.transform.PassContext(opt_level=3):
self.lib = relay.build(self.mod, target=self.target, params=self.params)
dev = tvm.device(str(self.target), 0)
self.module = graph_executor.GraphModule(self.lib["default"](dev))
(2)推理结果
从第一节中预处理后的数据中取出模型需要的三个输入输送到self.model,利用set_input接口进行推理,get_output输出结果,结果为两个shape均为[64,384]的NDArray,转成numpy格式取最大值找出答案所对应的可能性最大的初始位置和结束位置,由于BERT模型多输入且size相同的特殊性,在进行推理的时候需要注意输入数据的顺序以及名称,如果TVM中导入pytorch模型时指定的数据名称和最终推理时set_input的数据名称不一致会导致TVM无法得到正确的数据而出现推理出随机结果的情况,如果顺序不对会导致推理错误但不直接报错的情况,不易debug,需要注意,具体代码如下:
data_set = PreSquad()
for i in range(self.input_shape[0]):
self.input_ids_list.append(data_set.eval_features[i].input_ids)
self.segment_ids_list.append(data_set.eval_features[i].segment_ids)
self.input_mask_list.append(data_set.eval_features[i].input_mask)
self.module.set_input(
input_ids=tvm.nd.array(np.array(self.input_ids_list).astype("float32")),
input_mask=tvm.nd.array(np.array(self.input_mask_list).astype("float32")),
segment_ids=tvm.nd.array(np.array(self.segment_ids_list).astype("float32")),
)
self.module.run()
start_tvm = np.argmax(self.module.get_output(0).numpy(), axis=-1)
end_tvm = np.argmax(self.module.get_output(1).numpy(), axis=-1)
为了对比TVM推理是否准确,本文还利用torch进行了推理,代码如下:
with torch.no_grad():
torch_start_out, torch_end_out = self.jit_model(
torch.tensor(self.input_ids_list),
torch.tensor(self.input_mask_list),
torch.tensor(self.segment_ids_list),
)
start_torch = np.argmax(torch_start_out.numpy(), axis=-1)
end_torch = np.argmax(torch_end_out.numpy(), axis=-1)
TVM和torch推理结果一致,结果如下:
TVM start_output:
[ 64 253 133 254 346 57 75 134 170 210 70 98 143 174 299 46 113 66
220 349 12 281 108 22 28 318 282 0 17 42 240 30 32 41 85 98
195 21 0 101 0 304 176 117 0 25 0 12 0 25 0 216 88 304
176 0 283 93 0 204 76 204 346 44]
TVM end_output:
[ 67 255 134 256 347 57 78 135 170 224 73 252 148 174 301 47 114 69
220 350 15 283 110 23 30 328 284 0 17 39 243 47 34 41 86 98
202 30 0 109 0 306 178 118 0 34 0 13 0 34 0 216 88 306
178 0 287 97 0 211 0 219 348 52]
Pytorch start_output:
[ 64 253 133 254 346 57 75 134 170 210 70 98 143 174 299 46 113 66
220 349 12 281 108 22 28 318 282 0 17 42 240 30 32 41 85 98
195 21 0 101 0 304 176 117 0 25 0 12 0 25 0 216 88 304
176 0 283 93 0 204 76 204 346 44]
Pytorch end_output:
[ 67 255 134 256 347 57 78 135 170 224 73 252 148 174 301 47 114 69
220 350 15 283 110 23 30 328 284 0 17 39 243 47 34 41 86 98
202 30 0 109 0 306 178 118 0 34 0 13 0 34 0 216 88 306
178 0 287 97 0 211 0 219 348 52]
4. 性能优化
在上面的实验中我们已经验证了TVM编译BERT模型进行推理的正确性,接下来本文就时延性能利用TVM的AutoScheduler模块对BERT模型推理速度进行优化。AutoScheduler(别名Ansor)指的是无模板的自动调优模块。它将网络划分为小的子图,并对它们进行独立调整。任务调度器对时间进行切分,并将时间资源进行动态分配,最终获取最优的调度方案。
为了优化整个BERT网络模型,我们首先需要调用extract_tasks()函数从之前得到self.mod和self.params对任务进行抽取。extract_tasks()函数会返回任务的key和相应的权重并创建SearchTask对象。
"""Tune kernel of graph in autoschedule"""
print("Extract tasks...")
tasks, task_weights = auto_scheduler.extract_tasks(
self.mod["main"], target=self.target, params=self.params
)
for idx, task in enumerate(tasks):
print(f"========== Task {idx} (workload key: {task.workload_key}) ==========")
print(task.compute_dag)
对于BERT模型,其输出如下:
之后进行tuning,函数auto_scheduler.TaskScheduler()可以设置一些相关的参数,num_measure_trials代表的是测试的次数,搜过总共会进行num_measure_trials个调度并返回其中最好的一个。在试运行阶段可以将其设置为较小的数量,一般情况下会按照tasks*800去进行设置。该参数很大程度会影响整个搜索的时间。runner运行程序并测量时间成本。measure_callbacks是搜索回调函数,会将测试记录转存到我们指定的文件中,方便保存和查询。
search_parameter = 800
tuner = auto_scheduler.TaskScheduler(tasks, task_weights)
tune_option = auto_scheduler.TuningOptions(
num_measure_trials=search_parameter*len(tasks),
runner=auto_scheduler.LocalRunner(repeat=10, enable_cpu_cache_flush=True, timeout=50),
measure_callbacks=[auto_scheduler.RecordToFile(self.auto_scheduler_file)],
)
tuner.tune(tune_option)
下表是搜索中生成的表格,其中可以观察到所使用的的BERT模型具体的task名称、任务时延和速度、测试次数和下一个任务ID等。另外搜索过程中也会出现一些无效调度导致的错误,这不会影响到整个过程,无需关注。
搜索完成后,self.auto_scheduler_file文件中会储存最优的调度计划,利用该文件重新进行编译和评估,代码如下:
print("Compile...")
with auto_scheduler.ApplyHistoryBest(self.auto_scheduler_file):
with tvm.transform.PassContext(
opt_level=3, config={"relay.backend.use_auto_scheduler": True}
):
self.lib = relay.build(self.mod, target=self.target, params=self.params)
# Create graph executor
dev = tvm.device(str(self.target), 0)
module = graph_executor.GraphModule(self.lib["default"](dev))
self.module.set_input(
input_ids=tvm.nd.array((np.random.uniform(size=self.input_shape)).astype("float32")),
input_mask=tvm.nd.array((np.random.uniform(size=self.input_shape)).astype("float32")),
segment_ids=tvm.nd.array((np.random.uniform(size=self.input_shape)).astype("float32")),
)
# Evaluate
print("Evaluate inference time cost...")
print(module.benchmark(dev, repeat=3, min_repeat_ms=500))
TVM优化前后的BERT模型推理时间如下,可以看出利用Ansor优化后,BERT模型的时延性能明显提升。
Evaluation of the PyTorch network without auto tune:
mean (ms) median (ms) max (ms) min (ms) std (ms)
27109.7505 27113.5095 27168.2594 27047.4827 49.3784
Evaluation of the PyTorch network with auto tune:
mean (ms) median (ms) max (ms) min (ms) std (ms)
12501.2272 12484.2228 12580.4266 12439.0323 58.9630
5. 总结
本文利用TVM编译框架对NLP中的BERT模型针对问答任务进行了推理并简述了squad数据集的预处理过程,另外利用torch框架辅助验证了TVM推理的正确性。在推理性能方面,描述了TVM的AutoScheduler模块对BERT网络模型优化的过程以及效果。
参考文献
1.BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Attention Is All You Need
2.https://github.com/mlcommons/inference/blob/f5367250115ad4febf1334b34881ab74f2e55bfe/language/bert
3.https://rajpurkar.github.io/SQuAD-explorer/
4.https://tvm.apache.org/docs/how_to/tune_with_autoscheduler/ tune_network_x86html#sphx-glr-how-to-tune-with-autoscheduler-tune-network-x86-py
5.https://tvm.apache.org/docs/reference/api/python/auto_scheduler.html