CogBlobTool 是康耐视(Cognex)公司 VisionPro 软件中用于斑点检测和分析的工具。以下是其相关介绍:
- 功能特点
- 斑点检测与定位:能检测图像中某一灰度范围内形状未知的特征,即斑点,并精确定位它们在图像中的位置。
- 多种阈值模式:提供固定阈值和相对阈值两种模式。固定阈值允许用户指定一个固定的像素值作为图像分割点;相对阈值则根据灰度直方图中某个百分比处的像素值来动态计算图像分割的阈值,使阈值设定更灵活,能适应不同图像的特点。
- 斑点过滤:用户可设置 Blob 的最小面积,以此过滤掉过小的无关物体,减少干扰信息,提高检测的准确性。
- 区域设置:可以指定检测的区域,让斑点检测仅在特定的图像区域内进行,提高检测效率,避免在无关区域浪费计算资源。
- 多斑点识别与分析:支持同时检测和分析多个斑点,不仅能确定斑点的数量,还能提供每个斑点的详细信息,如面积、中心位置、形状、方向等,以及不同斑点之间的拓扑关系。
- 应用场景
- 工业自动化:在生产线上,可用于检测和定位零件、产品等,例如检查零件的表面缺陷、识别产品的位置和姿态,为后续的加工、装配、检测等工序提供准确的位置信息。
- 医学影像分析:辅助医生进行疾病的诊断和治疗,如在 X 光、CT 等医学影像中检测病变区域、分析肿瘤的形状和大小等,帮助医生更准确地判断病情。
- 安全监控:用于自动检测和识别监控画面中的异常行为,如检测人员的异常动作、物体的异常移动等,及时发现安全隐患。
图像路径
点击工具箱,选择 CogBlobTool 斑点工具
模式
软阈值与硬阈值:像素个数统计方式差异
- 软阈值:单一定值,分割统计斑点像素与背景像素
- 硬阈值:区域阈值,像素加权计划进行统计
固定阈值、相对阈值与动态阈值:灰度分割值计算方式差异
- 固定阈值:斑点像素和北京像素分别根据灰度值来确定
- 相对阈值:通过设定左尾部和右尾部间的像素百分比值计算灰度阈值
- 动态阈值:软件通过左尾部和右尾部的像素分布自动计算灰度阈值
固定阈值对比相对阈值:
- 固定阈值处理速度更快;
- 相对阈值适应能力更强(不受图像亮度线性变化影响);
- 固定阈值可以用于判断特征有无、而相对阈值不能。
动态阈值:系统自动计算分割阈值,适用于特征与背景灰度分布差异明显(双峰)。
(其实各种阈值我搞不清楚,根据实际情况选取合适的模式)
极性:字面意思上的黑底白点或白底黑点
连通性
- 灰度连通性斑点被定义为一组连接的对象像素,Blob工具以8邻域来定义对象的连通性;也就是说,所有与给定像素边缘接壤像素被认定为与该像素连接。
- 由于对象像素是8邻域,背景像素是4邻域;也就是说背景像素在对角线被认为是不连接的。
形态学操作
灰度形态学是将简单的运算符应用于图像内连续的像素邻域的过程。Blob工具提供的运算符允许您在图像中的每个像素位置上,用特定邻域内的最小像素值或最大像素值替换。形态学运算符考虑对象像素和背景像素,将白色像素解释为对象像素,黑色像素解释为背景。
- 名称 形态学操作 用途 例程
- 水平膨胀(eMaxH) 用水平相邻像素的最大值替换图像中的每个像素 减少或消除物体内部的竖向孔洞,增加竖向物体特征的浓度。
- 水平腐蚀(eMinH) 用水平相邻像素的最小值替换图像中的每个像素减少或消除物体上的竖向特征,增加物体内部竖向孔洞的浓度。
- 垂直膨胀(eMaxV) 用垂直相邻像素的最大值替换图像中的每个像素减少或消除对象内部的水平形状孔洞,增加水平形状对象特征的浓度。
- 垂直腐蚀(eMinV) 用垂直相邻像素的最小值替换图像中的每个像素减少或消除对象内部的水平形状对象特征,增加水平形状孔洞的浓度。
- 正方形膨胀(eMaxS) 用图像中每个像素及其八个垂直和水平相邻的最小值替换图像中的每个像素减少或消除对象内部的孔洞,增大对象的特征浓度。
- 正方形腐蚀(eMinS) 用图像中每个像素及其八个垂直和水平相邻的最小值替换图像中的每个像素减少或消除对象特征,增加对象内部孔洞的浓度。
- 水平开运算(eMaxMinH) 首先对图像进行水平腐蚀操作,然后进行水平膨胀操作。 保留对象内部的垂直形状孔洞,同时消除垂直形状的对象特征。
- 水平闭运算(eMinMaxH) 首先对图像进行水平膨胀操作,然后进行水平腐蚀操作。 保留对象内部的垂直形状特征,同时消除对象内部的垂直形状孔洞。
- 垂直开运算(eMaxMinV) 首先对图像进行垂直腐蚀操作,然后进行垂直膨胀操作。 保留对象内部的水平形状孔洞,同时消除对象内部的水平形状对象特征。
- 垂直闭运算(eMinMaxV) 首先对图像进行垂直膨胀操作,然后进行垂直腐蚀操作。 保留对象内部的水平形状特征,同时消除对象内部的水平形状孔洞。
- 正方形开运算(eMaxMinS) 首先对图像进行正方形腐蚀操作,然后进行方形膨胀操作。 保留对象内的孔洞,同时消除小的对象特征。
- 正方形闭运算(eMinMaxS) 首先对图像进行正方形膨胀操作,然后进行方形腐蚀操作。 保留对象内的特征,同时消除对象内的孔洞。
自己画了一张图像
清除选项选择不同的参数会有不同的结果
面积选择900
清除选择无
填充
修剪
区域参数与其他工具类似,选取合适的搜索区域
测得尺寸选项可以帮助我们筛选出想要的特征,默认添加了四个选项:面积、质心X坐标、质心Y坐标和连接性标签(斑点 / 孔)。
运行时选择过滤,范围可以选择排除或包含,低和高是最小值和最大值,排除就丢掉,包含就留下。
选择不同的参数筛选出不同的结果
点击新建还有很多可以筛选的选项,根据需求可以自己添加。
灰度直方图 Histogram :图像指定区域内所有灰度值的统计分布曲线图,以每种像素灰度值(X轴)对像素个数(Y轴)计数的平面图。